AnalyticalMethodValidation
CI status | Coverage |
---|---|
A small package for analytical method validation, and sample analysis.
For command line interfaces, see juliaquant
.
Function
read
: read csv file(s) intoAnalysisTable
(SeeChemistryQuantitativeAnalysis.jl
). Currently, only data from MassHunter Software in wide format is supported.
Report functions
These function accept AnalysisTable
or Batch
.
qc_report
: compute statistics of QC samples.ap_report
: compute accuracy, repeatability and reproducibility.recovery_report
: compute recovery by prespiked/postspiked.me_report
: compute matrix effect by with_matrix/std_solution.stability_report
: compute stability in different condition and restoration days.sample_report
: average each sample.
Util functions
pivot
: transform dataframe into wide format.unpivot
: transform dataframe into long format.selectby
: select values by specific column, and applyselect!
as if the values are columns. This function is useful to merge multiple statistical values into specific formats.mean_plus_minus_std
: round and merge mean values and standard deviations with "±".add_percentage
: add "%".normalize
: normalize dataframe by the given normalizer.qualify
: replace data out of acceptable range.qualify!
: replace data out of acceptable range.
Computation
Intra-day
$$a_{d,j } = \dfrac{c_{d, j}}{conc.}$$
$$\mu_{d} = \sum_{j=1}^{n_d} \dfrac{a_{d, j}}{n_d}$$
$$s_{intra}^2 = \dfrac{1}{p}\sum_{i = 1}^{p}\sum_{j = 1}^{n_i} \dfrac{(a_{i, j} - \mu_i)^2}{n_i - 1}$$
$$accuracy_{intra, d} = \mu_{d}$$
$$rsd_{intra, d} = \dfrac{s_{intra}}{accuracy_{intra, d}}$$
$p$: number of days, $n_i$: number of repeats of $i$ th day, $c_{i, j}$: measured concentration of $i$ th day and $j$ th repeat, $conc.$: reference concentration
Inter-day
$$\mu = \dfrac{1}{p}\sum_{i = 1}^{p}\sum_{j = 1}^{n_i} \dfrac{a_{i, j}}{n_i}$$
$$accuracy_{inter} = \sum_{i = 1}^{p} \dfrac{accuracy_{intra, i}}{p} = \mu$$
$$repeatability = rsd_{intra} = \dfrac{s_{intra}}{accuracy_{inter}}$$
$$s_{between}^2 = \sum_{i = 1}^{p} \dfrac{(\mu_i - \mu)^2}{n_d - 1}$$
$$s_{inter}^2 = max\ {0, s_{between}^2 - \dfrac{s_{intra}^2}{\hat{n}}\ }$$
$$\hat{n}=\dfrac{p}{\sum_{i=1}^p\dfrac{1}{n_i}}$$
$$reproducibility = rsd_{total} = \dfrac{\sqrt{s_{inter}^2+s_{intra}^2}}{accuracy_{inter}}$$
Reference
Guidelines and Recommendations of the GTFCh
Appendix B - Requirements for the validation of analytical methods p.21~p.22