API
ArviZExampleData.describe_example_data
— Functiondescribe_example_data(name) -> String
Return a string containing descriptions of all available datasets.
Examples
julia> describe_example_data("radon") |> println
radon
=====
Radon is a radioactive gas that enters homes through contact points with the ground. It is a carcinogen that is the primary cause of lung cancer in non-smokers. Radon levels vary greatly from household to household.
This example uses an EPA study of radon levels in houses in Minnesota to construct a model with a hierarchy over households within a county. The model includes estimates (gamma) for contextual effects of the uranium per household.
See Gelman and Hill (2006) for details on the example, or https://docs.pymc.io/notebooks/multilevel_modeling.html by Chris Fonnesbeck for details on this implementation.
remote: http://ndownloader.figshare.com/files/24067472
ArviZExampleData.load_example_data
— Functionload_example_data(name; kwargs...) -> InferenceObjects.InferenceData
load_example_data() -> Dict{String,AbstractFileMetadata}
Load a local or remote pre-made dataset.
kwargs
are forwarded to InferenceObjects.from_netcdf
.
Pass no parameters to get a Dict
listing all available datasets.
Data files are handled by DataDeps.jl. A file is downloaded only when it is requested and then cached for future use.
Examples
julia> keys(load_example_data())
KeySet for a OrderedCollections.OrderedDict{String, ArviZExampleData.AbstractFileMetadata} with 10 entries. Keys:
"centered_eight"
"non_centered_eight"
"radon"
"rugby"
"rugby_field"
"regression1d"
"regression10d"
"classification1d"
"classification10d"
"glycan_torsion_angles"
julia> load_example_data("centered_eight")
InferenceData with groups:
> posterior
> posterior_predictive
> log_likelihood
> sample_stats
> prior
> prior_predictive
> observed_data
> constant_data