Internal Documentation
Contents
Index
BlockArrays.BlockIndexRange
BlockArrays.BlockRange
BlockArrays.BlockSlice
BlockArrays.BlockedOneTo
BlockArrays.BlockedUnitRange
BlockArrays.SubBlockIterator
BlockArrays.blockcheckbounds_indices
BlockArrays.blockcheckindex
BlockArrays.blockcolsupport
BlockArrays.blockedrange
BlockArrays.blockrowsupport
BlockArrays.unblock
Internals
BlockArrays.blockcolsupport
— Functionblockcolsupport(A, j)
Return an iterator containing the possible non-zero blocks in the j
-th block-column of A
.
Examples
julia> B = BlockArray(collect(reshape(1:9, 3, 3)), [1,2], [1,1,1])
2×3-blocked 3×3 BlockMatrix{Int64}:
1 │ 4 │ 7
───┼─────┼───
2 │ 5 │ 8
3 │ 6 │ 9
julia> BlockArrays.blockcolsupport(B, 2) |> collect
2-element Vector{Block{1, Int64}}:
Block(1)
Block(2)
BlockArrays.blockrowsupport
— Functionblockrowsupport(A, k)
Return an iterator containing the possible non-zero blocks in the k
-th block-row of A
.
Examples
julia> B = BlockArray(collect(reshape(1:9, 3, 3)), [1,2], [1,1,1])
2×3-blocked 3×3 BlockMatrix{Int64}:
1 │ 4 │ 7
───┼─────┼───
2 │ 5 │ 8
3 │ 6 │ 9
julia> BlockArrays.blockrowsupport(B, 2) |> collect
3-element Vector{Block{1, Int64}}:
Block(1)
Block(2)
Block(3)
BlockArrays.blockedrange
— Functionblockedrange(blocklengths::Union{Tuple, AbstractVector})
blockedrange(first::Integer, blocklengths::Union{Tuple, AbstractVector})
Return a blocked AbstractUnitRange{<:Integer}
with the block sizes being blocklengths
. If first
is provided, this is used as the first value of the range. Otherwise, if only the block lengths are provided, first
is assumed to be 1
.
Examples
julia> blockedrange([1,2])
2-blocked 3-element BlockedOneTo{Int64, Vector{Int64}}:
1
─
2
3
julia> blockedrange(2, (1,2))
2-blocked 3-element BlockedUnitRange{Int64, Tuple{Int64, Int64}}:
2
─
3
4
BlockArrays.BlockedOneTo
— TypeBlockedOneTo{T, <:Union{AbstractVector{T}, NTuple{<:Any,T}}} where {T}
Define an AbstractUnitRange{T}
that has been divided into blocks, which is used to represent axes
of block arrays. This parallels Base.OneTo
in that the first value is guaranteed to be 1
.
Construction is typically via blockedrange
which converts a vector of block lengths to a BlockedUnitRange
.
Examples
julia> blockedrange([2,2,3]) # block lengths
3-blocked 7-element BlockedOneTo{Int64, Vector{Int64}}:
1
2
─
3
4
─
5
6
7
See also BlockedUnitRange
.
BlockArrays.BlockedUnitRange
— TypeBlockedUnitRange
is an AbstractUnitRange{<:Integer}
that has been divided into blocks. Construction is typically via blockedrange
which converts a vector of block lengths to a BlockedUnitRange
.
Examples
julia> blockedrange(2, [2,2,3]) # first value and block lengths
3-blocked 7-element BlockedUnitRange{Int64, Vector{Int64}}:
2
3
─
4
5
─
6
7
8
See also BlockedOneTo
.
BlockArrays.BlockRange
— TypeBlockRange(axes::Tuple{AbstractUnitRange{Int}})
BlockRange(sizes::Vararg{Integer})
Represent a Cartesian range of blocks.
The relationship between Block
and BlockRange
mimics the relationship between CartesianIndex
and CartesianIndices
.
Examples
julia> BlockRange(2:3, 3:4) |> collect
2×2 Matrix{Block{2, Int64}}:
Block(2, 3) Block(2, 4)
Block(3, 3) Block(3, 4)
julia> BlockRange(2, 2) |> collect # number of elements, starting at 1
2×2 Matrix{Block{2, Int64}}:
Block(1, 1) Block(1, 2)
Block(2, 1) Block(2, 2)
julia> Block(1):Block(2)
BlockRange(1:2)
BlockArrays.BlockIndexRange
— TypeBlockIndexRange(block, startind:stopind)
represents a cartesian range inside a block.
BlockArrays.BlockSlice
— TypeBlockSlice(indices)
Represent an AbstractUnitRange of indices that attaches a block.
Upon calling to_indices()
, Blocks are converted to BlockSlice objects to represent the indices over which the Block spans.
This mimics the relationship between Colon
and Base.Slice
.
BlockArrays.unblock
— Functionunblock(block_sizes, inds, I)
Returns the indices associated with a block as a BlockSlice
.
BlockArrays.SubBlockIterator
— TypeSubBlockIterator(subblock_lasts::Vector{Int}, block_lasts::Vector{Int})
SubBlockIterator(A::AbstractArray, bs::NTuple{N,AbstractUnitRange{Int}} where N, dim::Integer)
Return an iterator over the BlockIndexRange
s of the blocks specified by subblock_lasts
. The Block
index part of BlockIndexRange
is determined by subblock_lasts
. That is to say, the Block
index first specifies one of the block represented by subblock_lasts
and then the inner-block index range specifies the region within the block. Each such block corresponds to a block specified by blocklasts
.
Note that the invariance subblock_lasts ⊂ block_lasts
must hold and must be ensured by the caller.
Examples
julia> using BlockArrays
julia> import BlockArrays: SubBlockIterator
julia> A = BlockArray(1:6, 1:3);
julia> subblock_lasts = blocklasts(axes(A, 1))
3-element ArrayLayouts.RangeCumsum{Int64, UnitRange{Int64}}:
1
3
6
julia> block_lasts = [1, 3, 4, 6];
julia> itr = SubBlockIterator(subblock_lasts, block_lasts)
SubBlockIterator([1, 3, 6], [1, 3, 4, 6])
julia> collect(itr)
4-element Vector{BlockArrays.BlockIndexRange{1, Tuple{UnitRange{Int64}}, Tuple{Int64}, Int64}}:
Block(1)[1:1]
Block(2)[1:2]
Block(3)[1:1]
Block(3)[2:3]
BlockArrays.blockcheckbounds_indices
— Functionblockcheckbounds_indices(Bool, IA::Tuple{Vararg{BlockRange{1}}}, I::Tuple{Vararg{Integer}})
Return true if the "requested" indices in the tuple Block.(I)
fall within the bounds of the "permitted" indices specified by the tuple IA
. This function recursively consumes elements of these tuples in a 1-for-1 fashion.
The actual bounds-checking is performed by blockcheckindex
.
Examples
julia> B = BlockArray(zeros(6,6), 1:3, 1:3);
julia> blockaxes(B)
(BlockRange(Base.OneTo(3)), BlockRange(Base.OneTo(3)))
julia> BlockArrays.blockcheckbounds_indices(Bool, blockaxes(B), (1,2))
true
julia> BlockArrays.blockcheckbounds_indices(Bool, blockaxes(B), (4,1))
false
BlockArrays.blockcheckindex
— Functionblockcheckindex(Bool, inds::BlockRange{1}, index::Integer)
Return true
if Block(index)
is within the bounds of inds
.
Examples
julia> BlockArrays.blockcheckindex(Bool, BlockRange(1:2), 1)
true
julia> BlockArrays.blockcheckindex(Bool, BlockRange(1:2), 3)
false