BloqadeWaveforms.Waveform
— Typestruct Waveform{F,T<:Real}
Type for waveforms. Waveform
s are defined as a function combined with a real number duration.
Fields
f
: a callable object.duration
: a real number defines the duration of this waveform; default unit isμs
.
BloqadeWaveforms.Waveform
— MethodWaveform(f; duration::Real)
Create a Waveform
object from callable f
, the unit of duration
is μs
.
Example
julia> Waveform(duration=1.5) do t
2π*(2t+1)
end
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
1 │⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
julia>
BloqadeWaveforms.append
— Methodappend(wf::Waveform, wfs::Waveform...)
Append other waveforms to wf
on time axis.
BloqadeWaveforms.constant
— Methodconstant(;duration::Real, value::Real)
Create a constant waveform.
Keyword Arguments
duration::Real
: duration of the whole waveform.value::Real
: value of the constant waveform.
BloqadeWaveforms.linear_ramp
— Methodlinear_ramp(;duration, start_value, stop_value)
Create a linear ramp waveform.
Keyword Arguments
duration::Real
: duration of the whole waveform.start_value::Real
: start value of the linear ramp.stop_value::Real
: stop value of the linear ramp.
Example
julia> linear_ramp(;duration=2.2, start_value=0.0, stop_value=1.0 * 2π)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀
BloqadeWaveforms.piecewise_constant
— Methodpiecewise_constant(;clocks, values, duration=last(clocks))
Create a piecewise constant waveform.
The number of elements in clocks
should be one greater than the number of elements in values
. For example, if you wanted to define a piecewise constant waveform with the following:
- 0.0 2π ⋅ MHz from 0.0 to 0.5 μs
- 1.0 2π ⋅ MHz from 0.5 to 0.9 μs
- 2.1 2π ⋅ MHz from 0.9 to 1.1 μs
It would be expressed as: piecewise_constant(clocks=[0.0, 0.5, 0.9, 2.1], values=[0.0, 1.0, 2.1])
Keyword Arguments
clocks::Vector{<:Real}
: the list of clocks for the corresponding values.values::Vector{<:Real}
: the list of values at each clock.duration::Real
: the duration of the entire waveform, default is the last clock.
Example
julia> piecewise_constant(clocks=[0.0, 0.2, 0.5, 0.9], values=2π * [0.0, 1.5, 3.1])
┌────────────────────────────────────────┐
4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡖⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
0 │⣀⣀⣀⣀⣀⣀⣀⣀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0.9⠀
BloqadeWaveforms.piecewise_constant_interpolate
— Methodpiecewise_constant_interpolate(wf::Waveform; min_step::Real=0.0, atol::Real = 1.0e-5)
Converts wf
to a piecewise_constant
waveform subject to min_step
(the smallest allowable time step) and tolerance atol
.
BloqadeWaveforms.piecewise_linear
— Methodpiecewise_linear(;clocks, values)
Create a piecewise linear waveform.
Keyword Arguments
clocks::Vector{<:Real}
: the list of clocks for the corresponding values.values::Vector{<:Real}
: the list of values at each clock.
Example
julia> piecewise_linear(clocks=[0.0, 2.0, 3.0, 4.0], values=2π * [0.0, 2.0, 2.0, 0.0])
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀│
│⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀│
│⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀│
│⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀│
│⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆│
0 │⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4⠀
BloqadeWaveforms.piecewise_linear_interpolate
— Methodpiecewise_linear_interpolate(waveform;[max_vale=Inf64,max_slope=Inf64,min_step=0.0])
Function which takes a waveform and translates it to a linear interpolation subject to some constraints. The function returns a piecewise linear waveform. if the Waveform is piecewise linear only the constraints will be checked.
Arguments
waveform
: 'Waveform' to be discretized.
Keyword Arguments
min_step
: minimum possible step used in interpolationmax_slope
: Maximum possible slope used in interpolationatol
: tolerance of interpolation, this is a bound to the area between the linear interpolation and the waveform.
BloqadeWaveforms.sample_clock
— Methodsample_clock(wf::Waveform; offset::Real = zero(eltype(wf)), dt::Real = 1e-3)
Generates range of time values based on wf
's duration with dt
time between each time value along with offset
time added to the beginning and end of the waveform's time span.
See also sample_values
julia> wf = sinusoidal(duration=2, amplitude=2π*2.2); # create a waveform
julia> sample_clock(wf;) # range from 0.0 to 2.0 with step of 0.001 (default arg)
0.0:0.001:2.0
julia> sample_clock(wf; offset=0.1) # offset beginning and end by 0.1
0.1:0.001:2.1
julia> sample_clock(wf; dt = 2e-3) # set step size of 2e-3
0.0:0.002:2.0
BloqadeWaveforms.sample_values
— Methodsample_values(wf::Waveform, clocks; offset::Real = zero(eltype(wf)))
sample_values(wf::Waveform; offset::Real = zero(eltype(wf)), dt::Real = 1e-3)
Samples of waveform wf
values obtainable by either providing an iterable clocks
containing exact time values to sample from or providing offset
and dt
values which specify the offset to add to the beginning and end of the waveforms time span and the step between time values.
See also sample_clock
julia> wf = linear_ramp(duration=0.5, start_value=0.0, stop_value=2π*1.0);
julia> sample_values(wf,0.0:0.1:0.5) # sample waveform values from range
6-element Vector{Float64}:
0.0
1.2566370614359172
2.5132741228718345
3.7699111843077517
5.026548245743669
6.283185307179586
julia> sample_values(wf; dt=5e-2) #5e-2 time gap between each sampled valued
11-element Vector{Float64}:
0.0
0.6283185307179586
1.2566370614359172
1.8849555921538759
2.5132741228718345
3.141592653589793
3.7699111843077517
4.39822971502571
5.026548245743669
5.654866776461628
6.283185307179586
BloqadeWaveforms.sinusoidal
— Methodsinusoidal(;duration::Real, amplitude::Real=one(start))
Create a sinusoidal waveform of the following expression.
amplitude * sin(2π*t)
Keyword Arguments
duration
: duration of the waveform.amplitude
: amplitude of the sin waveform.
BloqadeWaveforms.smooth
— Functionsmooth([kernel=Kernel.gaussian], f; edge_pad_size::Int=length(f.clocks))
Kernel smoother function for piece-wise linear function/waveform via weighted moving average method.
Arguments
kernel
: the kernel function, default isKernels.gaussian
.f
: aUnion{PiecewiseLinear, PiecewiseConstant}
function or aWaveform{<:Union{PiecewiseLinear, PiecewiseConstant}}
.
Keyword Arguments
kernel_radius
: radius of the kernel.edge_pad_size
: the size of edge padding.
BloqadeWaveforms.smooth
— Methodsmooth(kernel, Xi::Vector, Yi::Vector, kernel_radius::Real)
Kernel smoother function via weighted moving average method. See also Kernel Smoother.
Theory
Kernel function smoothing is a technique to define a smooth function $f: \mathcal{R}^p → \mathbf{R}$ from a set of discrete points by weighted averaging the neighboring points. It can be written as the following equation.
\[Ŷ(X) = \sum_i K(X, X_i) Y_i / \sum_i K(X, X_i)\]
where $Ŷ(X)$ is the smooth function by calculating the moving average of known data points $X_i$ and $Y_i$. K
is the kernel function, where $K(\frac{||X - X_i||}{h_λ})$ decrease when the Euclidean norm $||X - X_i||$ increase, $h_λ$ is a parameter controls the radius of the kernel.
Available Kernels
The following kernel functions are available via the Kernels
module:
Kernels.biweight
; Kernels.cosine
; Kernels.gaussian
; Kernels.logistic
; Kernels.parabolic
; Kernels.sigmoid
; Kernels.triangle
; Kernels.tricube
; Kernels.triweight
; Kernels.uniform
Arguments
kernel
: a Julia function that has methodkernel(t::Real)
.Xi::Vector
: a list of inputsX_i
.Yi::Vector
: a list of outputsY_i
.kernel_radius::Real
: the radius of the kernel.
Intervals.:..
— Functionfunction (..)(first, last)
Exported from Intervals
, creates a closed interval from first..last
and can be used with Waveform
structs to obtain a slice of a Waveform's values, with the waveform slice's time adjusted to begin at 0 μs and the duration being last - first
.
Example
julia> wf = Waveform(t->2.2*2π*sin(2π*t), duration = 2)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Int64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⡴⠋⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⡼⠁⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⢰⠃⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⢀⡏⠀⠀⠀⠀⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⡼⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
value / 2π (MHz) │⠧⠤⠤⠤⠤⠤⠤⠤⠤⠼⡦⠤⠤⠤⠤⠤⠤⠤⠤⢤⠧⠤⠤⠤⠤⠤⠤⠤⠤⠼⡦⠤⠤⠤⠤⠤⠤⠤⠤⢤│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⡞│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⢸⠁│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⠀⠀⠀⢀⠇⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⢀⡞⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⣠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⣠⠞⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀│
-3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀
julia> wf[0.9..1.5]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠤⠔⠒⠒⠒⠦⢤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠲⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⢦⡀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⠀⠀⠀│
value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⣠⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⡀⠀│
│⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦│
│⠉⠉⠉⠉⠉⡽⠋⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│
│⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⢀⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0.6⠀
LinearAlgebra.norm
— MethodLinearAlgebra.norm(x::Waveform;p::Real=1)
Defines the norm function on Waveform
type.
BloqadeWaveforms.Kernels
— ModuleBuilt-in kernel functions.
BloqadeWaveforms.Kernels.biweight
— Methodbiweight(t)
Biweight kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{15}{16}(1 - |t|^2)^2\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.cosine
— Methodcosine(t)
Cosine kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{π}{4}\cos\left(\frac{π}{2}t\right)\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.gaussian
— Methodgaussian(t)
Gaussian kernel function for smoothing waveforms via smooth
.
The function is defined as:
\[f(t) = \frac{1}{\sqrt{2π}}e^{-\frac{1}{2}|t|^2}\]
BloqadeWaveforms.Kernels.logistic
— Methodlogistic(t)
Logistic kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{1}{e^{t} + 2 + e^{-t}}\]
BloqadeWaveforms.Kernels.parabolic
— Methodparabolic(t)
Parabolic kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{3}{4}(1 - |t|^2)\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.sigmoid
— Methodsimgoid(t)
Sigmoid kernel funciton for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{2}{\pi (e^{t} + e^{-t})}\]
BloqadeWaveforms.Kernels.triangle
— Methodtriangle(t)
Triangle kernel function for smoothing waveforms via smooth
.
The function is defined as:
\[f(t) = 1 - |t|\]
where $|t| ≤ 1$. Otherwise, $f(t) = 0$
BloqadeWaveforms.Kernels.tricube
— Methodtricube(t)
Tricube kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{70}{81}(1 - |t|^3)^3\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.triweight
— Methodtriweight(t)
Biweight kernel function for smoothing waveforms via smooth
The function is defined as:
\[f(t) = \frac{35}{32}(1 - |t|^2)^3\]
when $|t| ≤ 1$. Otherwise, $f(t) = 0$.
BloqadeWaveforms.Kernels.uniform
— Methoduniform(t::T) where {T}
Uniform kernel function for smoothing waveforms via smooth
The function returns $1$ for $|t| ≤ 1$. Otherwise, it returns $0$.