BloqadeWaveforms.WaveformType
struct Waveform{F,T<:Real}

Type for waveforms. Waveforms are defined as a function combined with a real number duration.

Fields

  • f: a callable object.
  • duration: a real number defines the duration of this waveform; default unit is μs.
BloqadeWaveforms.WaveformMethod
Waveform(f; duration::Real)

Create a Waveform object from callable f, the unit of duration is μs.

Example

julia> Waveform(duration=1.5) do t
            2π*(2t+1)
        end
                    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
                    ┌────────────────────────────────────────┐
                  4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
   value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                  1 │⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    └────────────────────────────────────────┘
                    ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀

julia>
BloqadeWaveforms.constantMethod
constant(;duration::Real, value::Real)

Create a constant waveform.

Keyword Arguments

  • duration::Real: duration of the whole waveform.
  • value::Real: value of the constant waveform.
BloqadeWaveforms.linear_rampMethod
linear_ramp(;duration, start_value, stop_value)

Create a linear ramp waveform.

Keyword Arguments

  • duration::Real: duration of the whole waveform.
  • start_value::Real: start value of the linear ramp.
  • stop_value::Real: stop value of the linear ramp.

Example

julia> linear_ramp(;duration=2.2, start_value=0.0, stop_value=1.0 * 2π)
                    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
                    ┌────────────────────────────────────────┐ 
                  1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
   value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                  0 │⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    └────────────────────────────────────────┘ 
                    ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀ 
BloqadeWaveforms.piecewise_constantMethod
piecewise_constant(;clocks, values, duration=last(clocks))

Create a piecewise constant waveform.

The number of elements in clocks should be one greater than the number of elements in values. For example, if you wanted to define a piecewise constant waveform with the following:

  • 0.0 2π ⋅ MHz from 0.0 to 0.5 μs
  • 1.0 2π ⋅ MHz from 0.5 to 0.9 μs
  • 2.1 2π ⋅ MHz from 0.9 to 1.1 μs

It would be expressed as: piecewise_constant(clocks=[0.0, 0.5, 0.9, 2.1], values=[0.0, 1.0, 2.1])

Keyword Arguments

  • clocks::Vector{<:Real}: the list of clocks for the corresponding values.
  • values::Vector{<:Real}: the list of values at each clock.
  • duration::Real: the duration of the entire waveform, default is the last clock.

Example

julia> piecewise_constant(clocks=[0.0, 0.2, 0.5, 0.9], values=2π * [0.0, 1.5, 3.1])
                    ┌────────────────────────────────────────┐
                  4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡖⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
   value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                  0 │⣀⣀⣀⣀⣀⣀⣀⣀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    └────────────────────────────────────────┘
                    ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0.9⠀
BloqadeWaveforms.piecewise_linearMethod
piecewise_linear(;clocks, values)

Create a piecewise linear waveform.

Keyword Arguments

  • clocks::Vector{<:Real}: the list of clocks for the corresponding values.
  • values::Vector{<:Real}: the list of values at each clock.

Example

julia> piecewise_linear(clocks=[0.0, 2.0, 3.0, 4.0], values=2π * [0.0, 2.0, 2.0, 0.0])
                    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
                    ┌────────────────────────────────────────┐ 
                  2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀│ 
   value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀│ 
                    │⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀│ 
                    │⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀│ 
                    │⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀│ 
                    │⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡆│ 
                  0 │⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱│ 
                    └────────────────────────────────────────┘ 
                    ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4⠀ 
BloqadeWaveforms.piecewise_linear_interpolateMethod
piecewise_linear_interpolate(waveform;[max_vale=Inf64,max_slope=Inf64,min_step=0.0])

Function which takes a waveform and translates it to a linear interpolation subject to some constraints. The function returns a piecewise linear waveform. if the Waveform is piecewise linear only the constraints will be checked.

Arguments

Keyword Arguments

  • min_step: minimum possible step used in interpolation
  • max_slope: Maximum possible slope used in interpolation
  • atol: tolerance of interpolation, this is a bound to the area between the linear interpolation and the waveform.
BloqadeWaveforms.sample_clockMethod
sample_clock(wf::Waveform; offset::Real = zero(eltype(wf)), dt::Real = 1e-3)

Generates range of time values based on wf's duration with dt time between each time value along with offset time added to the beginning and end of the waveform's time span.

See also sample_values

julia> wf = sinusoidal(duration=2, amplitude=2π*2.2); # create a waveform

julia> sample_clock(wf;) # range from 0.0 to 2.0 with step of 0.001 (default arg)
0.0:0.001:2.0

julia> sample_clock(wf; offset=0.1) # offset beginning and end by 0.1
0.1:0.001:2.1

julia> sample_clock(wf; dt = 2e-3) # set step size of 2e-3
0.0:0.002:2.0
BloqadeWaveforms.sample_valuesMethod
sample_values(wf::Waveform, clocks; offset::Real = zero(eltype(wf)))
sample_values(wf::Waveform; offset::Real = zero(eltype(wf)), dt::Real = 1e-3)

Samples of waveform wf values obtainable by either providing an iterable clocks containing exact time values to sample from or providing offset and dt values which specify the offset to add to the beginning and end of the waveforms time span and the step between time values.

See also sample_clock

julia> wf = linear_ramp(duration=0.5, start_value=0.0, stop_value=2π*1.0);

julia> sample_values(wf,0.0:0.1:0.5) # sample waveform values from range
6-element Vector{Float64}:
 0.0
 1.2566370614359172
 2.5132741228718345
 3.7699111843077517
 5.026548245743669
 6.283185307179586

julia> sample_values(wf; dt=5e-2) #5e-2 time gap between each sampled valued
11-element Vector{Float64}:
 0.0
 0.6283185307179586
 1.2566370614359172
 1.8849555921538759
 2.5132741228718345
 3.141592653589793
 3.7699111843077517
 4.39822971502571
 5.026548245743669
 5.654866776461628
 6.283185307179586
BloqadeWaveforms.sinusoidalMethod
sinusoidal(;duration::Real, amplitude::Real=one(start))

Create a sinusoidal waveform of the following expression.

amplitude * sin(2π*t)

Keyword Arguments

  • duration: duration of the waveform.
  • amplitude: amplitude of the sin waveform.
BloqadeWaveforms.smoothMethod
smooth(kernel, Xi::Vector, Yi::Vector, kernel_radius::Real)

Kernel smoother function via weighted moving average method. See also Kernel Smoother.

Theory

Kernel function smoothing is a technique to define a smooth function $f: \mathcal{R}^p → \mathbf{R}$ from a set of discrete points by weighted averaging the neighboring points. It can be written as the following equation.

\[Ŷ(X) = \sum_i K(X, X_i) Y_i / \sum_i K(X, X_i)\]

where $Ŷ(X)$ is the smooth function by calculating the moving average of known data points $X_i$ and $Y_i$. K is the kernel function, where $K(\frac{||X - X_i||}{h_λ})$ decrease when the Euclidean norm $||X - X_i||$ increase, $h_λ$ is a parameter controls the radius of the kernel.

Available Kernels

The following kernel functions are available via the Kernels module:

Kernels.biweight; Kernels.cosine; Kernels.gaussian; Kernels.logistic; Kernels.parabolic; Kernels.sigmoid; Kernels.triangle; Kernels.tricube; Kernels.triweight; Kernels.uniform

Arguments

  • kernel: a Julia function that has method kernel(t::Real).
  • Xi::Vector: a list of inputs X_i.
  • Yi::Vector: a list of outputs Y_i.
  • kernel_radius::Real: the radius of the kernel.
Intervals.:..Function
function (..)(first, last)

Exported from Intervals, creates a closed interval from first..last and can be used with Waveform structs to obtain a slice of a Waveform's values, with the waveform slice's time adjusted to begin at 0 μs and the duration being last - first.

Example

julia> wf = Waveform(t->2.2*2π*sin(2π*t), duration = 2)
                    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Int64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
                    ┌────────────────────────────────────────┐
                  3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⡴⠋⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⡼⠁⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⢰⠃⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⢀⡏⠀⠀⠀⠀⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⡼⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
   value / 2π (MHz) │⠧⠤⠤⠤⠤⠤⠤⠤⠤⠼⡦⠤⠤⠤⠤⠤⠤⠤⠤⢤⠧⠤⠤⠤⠤⠤⠤⠤⠤⠼⡦⠤⠤⠤⠤⠤⠤⠤⠤⢤│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⡞│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⢸⠁│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⠀⠀⠀⢀⠇⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⢀⡞⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⣠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⣠⠞⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀│
                 -3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    └────────────────────────────────────────┘
                    ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀

julia> wf[0.9..1.5]
                    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Waveform{_, Float64}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
                    ┌────────────────────────────────────────┐
                  3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠤⠔⠒⠒⠒⠦⢤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠲⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⢦⡀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣄⠀⠀⠀│
   value / 2π (MHz) │⠀⠀⠀⠀⠀⠀⠀⠀⣠⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⡀⠀│
                    │⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦│
                    │⠉⠉⠉⠉⠉⡽⠋⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│
                    │⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⢀⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                 -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
                    └────────────────────────────────────────┘
                    ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀clock (μs)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0.6⠀
BloqadeWaveforms.Kernels.biweightMethod
biweight(t)

Biweight kernel function for smoothing waveforms via smooth

The function is defined as:

\[f(t) = \frac{15}{16}(1 - |t|^2)^2\]

when $|t| ≤ 1$. Otherwise, $f(t) = 0$.

BloqadeWaveforms.Kernels.cosineMethod
cosine(t)

Cosine kernel function for smoothing waveforms via smooth

The function is defined as:

\[f(t) = \frac{π}{4}\cos\left(\frac{π}{2}t\right)\]

when $|t| ≤ 1$. Otherwise, $f(t) = 0$.

BloqadeWaveforms.Kernels.parabolicMethod
parabolic(t)

Parabolic kernel function for smoothing waveforms via smooth

The function is defined as:

\[f(t) = \frac{3}{4}(1 - |t|^2)\]

when $|t| ≤ 1$. Otherwise, $f(t) = 0$.

BloqadeWaveforms.Kernels.triangleMethod
triangle(t)

Triangle kernel function for smoothing waveforms via smooth.

The function is defined as:

\[f(t) = 1 - |t|\]

where $|t| ≤ 1$. Otherwise, $f(t) = 0$

BloqadeWaveforms.Kernels.tricubeMethod
tricube(t)

Tricube kernel function for smoothing waveforms via smooth

The function is defined as:

\[f(t) = \frac{70}{81}(1 - |t|^3)^3\]

when $|t| ≤ 1$. Otherwise, $f(t) = 0$.

BloqadeWaveforms.Kernels.triweightMethod
triweight(t)

Biweight kernel function for smoothing waveforms via smooth

The function is defined as:

\[f(t) = \frac{35}{32}(1 - |t|^2)^3\]

when $|t| ≤ 1$. Otherwise, $f(t) = 0$.

BloqadeWaveforms.Kernels.uniformMethod
uniform(t::T) where {T}

Uniform kernel function for smoothing waveforms via smooth

The function returns $1$ for $|t| ≤ 1$. Otherwise, it returns $0$.