BytePairEncoding.jl
Pure Julia implementation of the Byte Pair Encoding (BPE) method. Support
openai-gpt2 byte-level bpe
and openai tiktoken. BytePairEncoding.jl
rely on
TextEncodeBase.jl and support different tokenization method.
julia> using BytePairEncoding
julia> tkr = BytePairEncoding.load_tiktoken("cl100k_base")
BPETokenizer(MatchTokenization(BPETokenization(Cl100kBaseTokenization, bpe = TikTokenBPE(100256 merges)), 5 patterns))
julia> tkr("hello world aaaaaaaaaaaa")
5-element Vector{String}:
"hello"
" world"
" a"
"aaaaaaaa"
"aaa"
julia> tkr2 = BytePairEncoding.load_gpt2()
BPETokenizer(MatchTokenization(CodeNormalizer(BPETokenization(GPT2Tokenization, bpe = BPE(50000 merges)), codemap = CodeMap{UInt8 => UInt16}(3 code-ranges)), 1 patterns))
julia> tkr2("hello world aaaaaaaaaaaa")
6-element Vector{String}:
"hello"
"Ġworld"
"Ġa"
"aaaa"
"aaaa"
"aaa"
julia> enc = BytePairEncoding.load_tiktoken_encoder("cl100k_base")
┌ Warning: The maximum encoded value (`length(BPEEncoder.vocab)`) is larger than the number of possible tokens
│ because there are some "gaps" in the vocabulary. Be carefull if used to initialize embedding table.
└ @ BytePairEncoding
BPEEncoder(BPETokenizer(MatchTokenization(BPETokenization(Cl100kBaseTokenization, bpe = TikTokenBPE(100256 merges)), 5 patterns)), Vocab(size = 100277))
julia> enc.encode("hello world aaaaaaaaaaaa") # === enc(...)
5-element Vector{Int64}:
15340
1918
265
70541
33747
julia> enc.decode(enc("hello world aaaaaaaaaaaa"))
"hello world aaaaaaaaaaaa"