Channels, States, and Operations

Channels

CVChannel.ChoiType
Choi( JN :: AbstractMatrix, in_dim :: Int, out_dim :: Int ) :: Choi{<:Number}

Choi( N :: Function, in_dim :: Int, out_dim :: Int ) :: Choi{ComplexF64}

Choi( kraus_ops :: Vector{<:AbstractMatrix} ) :: Choi{ComplexF64}

Constructs the Choi matrix representation of a quantum channel. If either a function N or set of kraus operators is provided as input, the Choi matrix is constructed with the choi method.

The Choi type contains the fields:

  • JN :: Matrix{<:Number} - The choi matrix.
  • in_dim :: Int - The channel's input dimension.
  • out_dim :: Int - The Channel's output dimension.

A DomainError is thrown if is_choi_matrix returns false.

CVChannel.is_choi_matrixFunction
is_choi_matrix(JN :: AbstractMatrix, dimA :: Int, dimB :: Int) :: Bool

Returns true if the supplied matrix JN is a Choi operator. This function returns false if

  • size(JN) != (dimA * dimB, dimA * dimB)
CVChannel.parChoiFunction
parChoi(chan1 :: Choi, chan2 :: Choi) :: Choi

Returns the tensor product of two Choi matrices

\[ J^{AB}_{\mathcal{N}}\otimes J^{A'B'}_{\mathcal{M}} \to J^{AA'BB'}_{\mathcal{N}\otimes\mathcal{M}}\]

where $J^{A:B}_{\mathcal{N}}$ and $J^{A':B'}_{\mathcal{M}}$ are the Choi matrices for chan1 and chan2 respectively. Note the implicit swap between systems $B \leftrightarrow A'$.

CVChannel.choiFunction
choi(𝒩 :: Function, Σ :: Int, Λ :: Int) :: Matrix{ComplexF64}
choi(kraus_ops :: Vector{<:AbstractMatrix}) :: Matrix{ComplexF64}

This function returns the Choi state of a channel represented either as a generic function 𝒩 or a set of Kraus operators kraus_ops. It does this using that

\[ J_{\mathcal{N}} = \sum_{a,b \in \Sigma} E_{a,b} \otimes \mathcal{N}(E_{a,b}) ,\]

where $\Sigma$ is the finite alphabet indexing the input space and $E_{a,b}$ is a square matrix of dimension $\Sigma$ with a $1$ in the $(a,b)$ entry and a $0$ everywhere else. The input $\Lambda$ is the output dimension. Note this assumes you have a function that calculates $\mathcal{N}(X)$ for arbitrary input $X$. As many of the functions for channels in this module have multiple parameters, please note that if you have a channel function 𝒩(ρ, p, q) that calculates $\mathcal{N}_{p,q}(\rho)$, you can declare a function 𝒩_xy(ρ) = 𝒩(ρ,x,y) for fixed (x,y) and then call, choi(𝒩_xy, Σ).

CVChannel.isometricChannelFunction
isometricChannel(kraus_ops :: Vector) :: Matrix

This function builds the isometric representation $V$ of a channel $\mathcal{N}: A \to B$ from the Kraus operators $\{K_{i}\}$. It does this by calculating

\[ V = \sum_{i} K_{i} \otimes |i\rangle\]

CVChannel.complementaryChannelFunction
complementaryChannel(kraus_ops :: Vector) :: Vector

This function takes a set of Kraus operators for a channel $\mathcal{N}_{A \to B}$ and returns a set of Kraus operators for the complementary channel, $\mathcal{N}^{c}_{A \to E}$. It does this by generating the Kraus operators of the isometric representation of the channel followed by partial trace on the $B$ space.

Info

If $\mathcal{N}_{A \to B}$ is already isometric, the code lets dimE=2 so that functions are well behaved.

CVChannel.krausActionFunction
krausAction(kraus_ops :: Vector, X)

This function takes a set of Kraus operators for a channel $\mathcal{N}_{A \to B}$ and returns the output of the channel for input $X$. That is, given input $X$ it returns

\[ \mathcal{N}_{A \to B}(X) = \sum_{i} K_{i} X K_{i}^{\ast}\]

CVChannel.depolarizingChannelFunction
depolarizingChannel(ρ :: Matrix{Float64}, q :: Union{Int,Float64}) :: Matrix{ComplexF64}

This calculates the action of the depolarizing channel,

\[\Delta_{q}(\rho) = (1-q)\rho + q \text{Tr}(\rho) \frac{1}{d} I_{AB} ,\]

where $q \in [0,1].$ Note these channels are the channels covariant with respect to the unitary group.

A DomainError is thrown if:

  • Matrix ρ is not square
  • Input q does not satisfy 0 ≤ q ≤ 1
CVChannel.dephrasureChannelFunction
dephrasureChannel(
    ρ :: Matrix{<:Number},
    p :: Union{Int,Float64},
    q :: Union{Int,Float64}
) :: Matrix{ComplexF64}

This function calculates the action of the dephrasureChannel,

\[\mathcal{N}_{p,q}( \rho) := (1-q)((1-p) \rho + pZ \rho Z) + q \text{Tr}( \rho) |e\rangle \langle e|,\]

where $p,q \in [0,1]$, $Z$ is the Pauli-Z matrix, and $|e\rangle\langle e|$ an error flag orthogonal to the Hilbert space of input state $\rho$.

A DomainError is thrown if:

  • Matrix ρ is not 2x2
  • Inputs p or q do not satisdy 0 ≤ p,q ≤ 1
CVChannel.wernerHolevoChannelFunction
wernerHolevoChannel(ρ :: Matrix{<:Number}, λ :: Union{Int,Float64}) :: Matrix{ComplexF64}

This function calculates the action of the generalized Werner-Holevo channels

\[ \mathcal{W}_{d,\lambda}(\rho) = \lambda \Phi_{0}(ρ) + (1-\lambda) \Phi_{1}(ρ)\]

where $\lambda \in [0,1]$. This means these are convex combinations of the original Werner-Holevo channels which are defined as

\[ \Phi_{0}(ρ) = \frac{1}{d+1}(\text{Tr}[\rho]I_{d} +ρ^{T}) \hspace{1cm} \Phi_{1}(ρ) = \frac{1}{d-1}(\text{Tr}[\rho]I_{d} -ρ^{T}) .\]

Note the Choi matrices of these generalized channels are the (unnormalized) Werner states.

A DomainError is thrown if:

  • Matrix ρ is not square
  • p is not in range 0 ≤ p ≤ 1
CVChannel.siddhuChannelFunction
siddhuChannel(ρ :: Matrix{<:Number}, s :: Union{Int,Float64}) :: Matrix{<:Number}

This function calculates the action of the Siddhu channel $N_{s}$ which is defined by Kraus operators:

\[ \begin{aligned} K_{0} = \begin{bmatrix} \sqrt{s} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \hspace{5mm} K_{1} = \begin{bmatrix} 0 & 0 & 0 \\ \sqrt{1-s} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \end{aligned}\]

where $s \in [0,1/2]$. This channel was introduced in Equation 9 of this paper.

CVChannel.generalizedSiddhuFunction
generalizedSiddhu(
      ρ :: Matrix{<:Number},
      s :: Union{Int,Float64},
      μ :: Union{Int,Float64}
) :: Matrix{<:Number}

This function calculates the action of the generalized Siddhu channel $\mathcal{N}_{s,\mu}$ on the qutrit state $\rho$. The action of the channel is defined by Kraus operators:

\[ \begin{aligned} K_{0} = \begin{bmatrix} \sqrt{s} & 0 & 0 \\ 0 & \sqrt{1-\mu} & 0 \\ 0 & 0 & \sqrt{\mu} \end{bmatrix} \hspace{5mm} K_{1} = \begin{bmatrix} 0 & 0 & \sqrt{1-\mu} \\ \sqrt{1-s} & 0 & 0 \\ 0 & \sqrt{\mu} & 0 \end{bmatrix} , \end{aligned}\]

where $s \in [0,1/2]$, $\mu \in [0,1]$. This channel was introduced by Leditzky et al. (cite when on arxiv).

A DomainError is thrown if:

  • Matrix ρ is not square
  • ρ is not a 3-dimensional matrix
  • s is not in range 0 ≤ s ≤ 1/2
  • μ is not in range 0 ≤ μ ≤ 1
CVChannel.GADChannelFunction
GADChannel(
    ρ :: Matrix{<:Number},
    p :: Union{Int,Float64},
    n :: Union{Int,Float64}
) :: Matrix{<:Number}

This function calculates the action of the generalized (qubit) amplitude damping channel $\mathcal{A}_{p,n}$ which is defined by Kraus operators:

\[ \begin{aligned} K_{0} =& \sqrt{1-n} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{bmatrix} \hspace{5mm} K_{1} =& \sqrt{p(1-n)} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \\ K_{2} =& \sqrt{n} \begin{bmatrix} \sqrt{1-p} & 0 \\ 0 & 1 \end{bmatrix} \hspace{5mm} K_{3} =& \sqrt{pn} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{aligned}\]

where $p,n \in [0,1]$. This channel may be found in Section 3 of this paper.

States

CVChannel.wernerStateFunction
wernerState(dim :: Int, p ::Union{Int,Float64}) :: Matrix{Float64}

This function constructs the Werner states,

\[ \sigma_{d,p} = p \frac{\Pi_{0}}{d+1 \choose 2} + (1-p) \frac{\Pi_{1}}{d \choose 2}\]

where $p \in [0,1]$ and $\Pi_0, \Pi_1$ are the projectors onto the symmetric and anti-symmetric subspaces respectively. They can be determined by

\[ \Pi_0 = \frac{1}{2} (I_{A} \otimes I_{B} + \mathbb{F}) \hspace{1cm} \Pi_1 = \frac{1}{2}(I_{A} \otimes I_{B} - \mathbb{F})\]

where $\mathbb{F}$ is the swap operator.

A DomainError is thrown if:

  • d ≤ 1
  • p is not in range 0 ≤ p ≤ 1
CVChannel.axisymmetricStateFunction
axisymmetricState(
    d :: Int64,
    x :: Union{Int,Float64},
    y :: Union{Int,Float64}
) :: Matrix{Float64}

Construct the axisymmetric state $\rho^{\text{axi}}$ as described in section IV.C. of this paper. This state is a bipartite quantum state with each subspace having dimension d. The diagonal of $\rho^{\text{axi}}$ is parameterized as

\[ \rho^{\text{axi}}_{jj,jj} = \frac{1}{d^2}+a, \quad \text{and}\quad \rho^{\text{axi}}_{jk,jk} = \frac{1}{d^2}- \frac{a}{d-1} \; (j\neq k)\]

while the off-diagonals are expressed as

\[ \rho^{\text{axi}}_{jj,kk} = b,\]

where $a = y\frac{d-1}{d}$ and $b = \frac{x}{\sqrt{d(d-1)}}$. All remaining elements of $\rho^{\text{axi}}$ are zero. Inputs x and y of the axisymmetricState function parameterize $\rho^{\text{axi}}$ and are constrained as:

  • $-\frac{1}{d\sqrt{d-1}} \leq y \leq \frac{\sqrt{d-1}}{d}$
  • $-\frac{1}{\sqrt{d(d-1)}}\leq x \leq \sqrt{\frac{d-1}{d}}$
  • $-\frac{1}{\sqrt{d}}\left( y + \frac{1}{d\sqrt{d-1}}\right) \leq x \leq \frac{d-1}{\sqrt{d}}\left(y + \frac{1}{d\sqrt{d-1}} \right)$

If any of the constraints above do not hold, a DomainError is thrown.

CVChannel.haarStatesFunction
haarStates(n :: Int64, d :: Int64) :: Vector{Matrix{ComplexF64}}

Constructs a list of n random states on a d-dimensional Hilbert space according to the Haar measure.

Operations

CVChannel.isPPTFunction
isPPT(x, sys :: Int, dims :: Vector) :: Bool

This function returns true if the input state x is PPT with respect to the (sys)th system. False otherwise. dims is a vector of the sizes of the subsystems.

CVChannel.swapOperatorFunction
swapOperator(dim :: Int) :: Matrix{Float64}

This function is the swap operator $\mathbb{F}$ which is defined by the action

\[\mathbb{F}(u \otimes v) = v \otimes u \hspace{5mm} u,v \in \mathcal{H}_{A} .\]

The function uses that $\mathbb{F} = \sum_{a,b \in \Sigma} E_{a,b} \otimes E_{b,a}$ where $E_{a,b}$ is a square matrix of dimension $\Sigma$ with a one in the $(a,b)$ entry and a $0$ everywhere else.

CVChannel.permuteSubsystemsFunction
permuteSubsystems(
    ρ:: Vector,
    perm::Vector{Int64},
    dims::Vector{Int64}
) :: Vector

This function returns the vector with the subsystems permuted. For example, given three subspaces $A,B,C$, and the permutation $\pi$ defined by $(A,B,C) \xrightarrow[]{\pi} (C,A,B),$ the function implements the process:

\[ |e_{i}\rangle_{A} |e_j \rangle_{B} |e_k \rangle_{C} \xrightarrow[]{\pi} |e_{k} \rangle_{C} |e_{i}\rangle_{A} |e_{j} \rangle_{B} ,\]

by re-indexing the vector, permuting the indices appropriately, and converting it back into a vector.

permuteSubsystems(
    ρ:: Matrix,
    perm::Vector{Int64},
    dims::Vector{Int64}
) :: Matrix

This function returns the matrix with the subsystems permuted. It is a generalization of the vector code. For example, given three subspaces $A,B,C$, and the permutation $\pi$ defined by $(A,B,C) \xrightarrow[]{\pi} (C,A,B),$ the function implements the process:

\[|e_{i}\rangle\langle e_{i}|_{A}\otimes |e_j \rangle\langle e_j|_{B}\otimes |e_k \rangle\langle e_k|_{C} \xrightarrow[]{\pi} |e_{k} \rangle\langle e_{k}|_{C}\otimes |e_{i}\rangle\langle e_{i}|_{A} \otimes |e_{j} \rangle\langle e_{j}|_{B} ,\]

by re-indexing the matrix, permuting the indices, and reconstructing the matrix. Both bra and ket indices receive the same permutation.

CVChannel.shiftOperatorFunction
shiftOperator(d::Int64) :: Matrix

This function returns the operator that shifts the computational basis mod d for complex Euclidean space of dimension d. That is, it returns the operator $S$ defined by the action

\[ S|k\rangle = |k+1 \mod d \rangle\]

CVChannel.discreteWeylOperatorFunction
discreteWeylOperator(m :: Int64, n :: Int64, d :: Int64)

This function returns the (m,n)^th unitary for generating the generalized Bell basis. They are defined by their action on the computational basis:

\[ U_{m,n}|e_{k}\rangle = e^{2 \pi mk i / d} |e_{k+n}\rangle\]

These are the discrete Weyl Operator basis. See Section 3 of this paper for further details.

Warning

Different works define the discrete Weyl operators differently such that the phase or ordering may differ. Please check your reference.