`CirculatorySystemModels.CR`

— Method`CR(;name, R=1.0, C=1.0)`

Implements the compliance, resistor subsystem.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s).

Named parameters:

`R`

: Component resistance in mmHg*s/ml

`C`

: Component compliance in ml/mmHg

`CirculatorySystemModels.CRL`

— Method`CRL(;name, C=1.0, R=1.0, L=1.0)`

Implements the compliance, resistor, inductance subsystem.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s).

Named parameters:

`C`

: Component compliance in ml/mmHg

`R`

: Component resistance in mmHg*s/ml

`L`

: Component blood inertia in mmHg*s^2/ml

`CirculatorySystemModels.Capacitor`

— Method`Capacitor(;name, C=1.0)`

Implements a capacitor to represent vessel capacitance.

Parameters are in the cm, g, s system. Pressures in mmHg. `Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`C`

: capacitance of the vessel in ml/mmHg

`CirculatorySystemModels.Compliance`

— Method`Compliance(; name, V₀=0.0, C=1.0, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0)`

Implements the compliance of a vessel.

Parameters are in the cm, g, s system. Pressure in mmHg. `Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`V₀`

: Unstressed volume ml

`C`

: Vessel compliance in ml/mmHg

`inP`

: (Bool) formulate in dp/dt (default: false)

`has_ep`

: (Bool) if true, add a parameter `p₀`

for pressure offset e.g., for thoracic pressure (default: false)

`p₀`

: External pressure in mmHg (e.g., thorax pressure, default: 0.0) *Note: if this argument is set, it will be used, even if `has*ep`is`

false`.`

has*ep only controls ifp₀` will be exposed as a parameter!*

has*variable*ep`: (Bool) expose pin for variable external pressure (default: false) This pin can be connected to another pin or function providing external pressure. _Note: if`

has*variable*ep`is set to`

true`this pin is created, independent of`

has*ep`!*

`CirculatorySystemModels.ConstantFlow`

— Method`ConstantFlow(;name, Q=1.0)`

Implements a constant flow source to a system.

Parameters are in the cm, g, s system. Pressure in mmHg. `Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`Q`

: Constant flow in cm^3/s (ml/s)

`CirculatorySystemModels.ConstantPressure`

— Method`ConstantPressure(;name, P=1.0)`

Implements a constant pressure source to a system.

Parameters are in the cm, g, s system. Pressure in mmHg. `Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`P`

: Constant pressure in mmHg

`CirculatorySystemModels.DHChamber`

— Method`DHChamber(;name, V₀, Eₘᵢₙ, n₁, n₂, τ, τ₁, τ₂, k, Eshift=0.0, Ev=Inf)`

The Double Hill chamber/ventricle model is defined based on the vessel element, but has a time varying elastance function modelling the contraction of muscle fibres

The time varying elastance is calculated using the Double Hill model.

This model uses external helper functions `elastance`

and `delastance`

which describe the elastance function and the first derivative of it.

It calculates the elastance as:

E(t) = (Eₘₐₓ - Eₘᵢₙ) * e(t) + Eₘᵢₙ

where e(t) is the Double-Hill function.

Named parameters:

`V₀`

: stress-free volume (zero pressure volume)

`p₀`

pressure offset (defaults to zero) this is present in some papers (e.g. Shi), so is provided here for conformity. Defaults to 0.0

`Eₘᵢₙ`

: minimum elastance

`Eₘₐₓ`

: maximum elastance

`n₁`

: rise coefficient

`n₂`

: fall coefficient

`τ`

: pulse length [s]

`τ₁`

: rise timing parameter[s]

`τ₂`

: fall timimg paramter [s]

`k`

: elastance factor*

`Eshift`

: time shift of contraction (for atria)

`inP`

: (Bool) formulate in dp/dt (default: false)

*Note: `k`

is not an independent parameter, it is a scaling factor that corresponds to 1/max(e(t)), which ensures that e(t) varies between zero and 1.0, such that E(t) varies between Eₘᵢₙ and Eₘₐₓ.

`CirculatorySystemModels.DHdelastance`

— Method`DHdelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k)`

Helper function for `DHChamber`

`CirculatorySystemModels.DHelastance`

— Method`DHelastance(t, Eₘᵢₙ, Eₘₐₓ, n₁, n₂, τ, τ₁, τ₂, Eshift, k)`

Helper function for `DHChamber`

`CirculatorySystemModels.DShiElastance`

— MethodDShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift)

Helper function for `ShiChamber`

Derivative of the elastance function `E(t)`

for ventricle simulation based on Shi's double cosine function.

Parameters:

`Eₘᵢₙ`

: minimum elastance (diastole)

`Eₘₐₓ`

: maximum elastance (systole)

`τₑₛ`

: end systolic time (end of rising cosine)

`τₑₚ`

: end of pulse time (end of falling cosine)

`Eshift`

: time shift of contraction (for atria), set to `0`

for ventricle

`CirculatorySystemModels.DrivenFlow`

— Method`DrivenFlow(;name, Q=1.0, fun)`

Implements a driven flow source to a system.

`Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`Q`

: Constant flow in cm^3/s (ml/s).

`τ`

Length of cardiac cycle is s

`fun`

: Function which modulates the input

`CirculatorySystemModels.DrivenPressure`

— Method`DrivenPressure(;name, P=1.0, fun)`

Implements a driven pressure source to a system modulated by a function provided.

`Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`P`

: Constant pressure in mmHg

`fun`

: Function which modulates the input

`CirculatorySystemModels.Elastance`

— Method`Elastance(; name, V₀=0.0, E=1.0, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0)`

Implements the elastance of a vessel. Elastance more commonly used to describe the heart.

`Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`V₀`

: Unstressed volume ml

`E`

: Vessel elastance in ml/mmHg. Equivalent to compliance as E=1/C

`inP`

: (Bool) formulate in dp/dt (default: false)

`has_ep`

: (Bool) if true, add a parameter `p₀`

for pressure offset e.g., for thoracic pressure (default: false)

`p₀`

: External pressure in mmHg (e.g., thorax pressure, default: 0.0) *Note: if this argument is set, it will be used, even if `has*ep`is`

false`.`

has*ep only controls ifp₀` will be exposed as a parameter!*

has*variable*ep`: (Bool) expose pin for variable external pressure (default: false) This pin can be connected to another pin or function providing external pressure. _Note: if`

has*variable*ep`is set to`

true`this pin is created, independent of`

has*ep`!*

`CirculatorySystemModels.Inductance`

— Method`Inductance(;name, L=1.0)`

Implements the inductance to represent blood inertance.

Parameters are in the cm, g, s system. Pressures in mmHg. `Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`L`

: Inertia of the fluid in mmHg*s^2/ml

`CirculatorySystemModels.MynardValve_Atrioventricular`

— Method@component function MynardValve_Atrioventricular(; name, ρ, Mrg, Mst, Ann, Kvc, Kvo)

Implements the Mynard description for flow across the atrioventricular valves, full description in [Mynard]. This valve description corresponds to the atrioventricular valves where interia is not considered.

Note: The minimum level of regurgitation has to be set to machine precision eps()

Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) Δp is scaled to ensure units are consistent throughout.

Named parameters:

name name of the element `ρ`

Blood density in g/cm^3 `Mrg`

Level of regurgitation exhibited by a valve in DN `Mst`

Level of stenosis exhibited by a valve in DN `Ann`

Annulus area in cm^2 `Kvc`

Valve closing rate coefficent in cm^2/(dynes*s) Kvo Valve opening rate coefficent in cm^2/(dynes*s)

Δp is calculated in mmHg q is calculated in cm^3/s (ml/s)

`CirculatorySystemModels.MynardValve_SemiLunar`

— Method@component function MynardValve_SemiLunar(; name, ρ, Leff, Mrg, Mst, Ann, Kvc, Kvo)

Implements the Mynard description for flow across the semilunar valves, full description in [Mynard]. This valve description corresponds to the semilunar valves where interia is an effect we consider.

Note: The minimum level of regurgitation has to be set to machine precision eps()

Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) Δp is scaled to ensure units are consistent throughout.

Named parameters:

name name of the element `ρ`

Blood density in g/cm^3 `Leff`

An effective length in cm `Mrg`

Level of regurgitation exhibited by a valve in DN `Mst`

Level of stenosis exhibited by a valve in DN `Ann`

Annulus area in cm^2 `Kvc`

Valve closing rate coefficent in cm^2/(dynes*s) Kvo Valve opening rate coefficent in cm^2/(dynes*s)

Δp is calculated in mmHg q is calculated in cm^3/s (ml/s)

`CirculatorySystemModels.OrificeValve`

— Method`OrificeValve(;name, CQ=1.0)`

Implements the square-root pressure-flow relationship across a valve.

Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s)

Named parameters:

`CQ`

Flow coefficent in ml/(s*mmHg^0.5)

`CirculatorySystemModels.PoiseuilleResistor`

— Method`PoiseuilleResistor(;name, μ=3e-2, r=0.5, L=5)`

Implements the resistance following the Poiseuille law.

Parameters are in the cm, g, s system. Pressures in mmHg. `Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`μ`

: viscosity of fluid in dyne s / cm^2

`r`

: radius of vessel segmenty in cm

`L`

: length of vessel segment in cm

`CirculatorySystemModels.QResistor`

— Method`QResistor(;name, K=1.0)`

Implements the quadratic resistor to represent a vessels non-linear resistance to blood flow.

`Δp`

is calculated in mmHg, `q`

is calculated in cm^3/s (ml/s).

Named parameters:

`K`

: non-linear resistance of the vessel to the fluid in mmHg*s^2/ml^2

`CirculatorySystemModels.RRCR`

— Method`RRCR(;name, R1=1.0, R2=1.0, R3=1.0, C=1.0)`

Implements the resistor, resistor, compliance, resistor subsystem.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s).

Named parameters:

`R1`

: Component resistance in mmHg*s/ml

`R2`

: Component resistance in mmHg*s/ml

`C`

: Component compliance in ml/mmHg

`R3`

: Component resistance in mmHg*s/ml

`CirculatorySystemModels.Resistor`

— Method`Resistor(;name, R=1.0)`

Implements the resistor using Ohm's law to represent a vessels linear resistance to blood flow.

Parameter is in the cm, g, s system. Pressure in mmHg. `Δp`

is calculated in mmHg `q`

calculated in cm^3/s (ml/s)

Named parameters:

`R`

: Resistance of the vessel to the fluid in mmHg*s/ml

`CirculatorySystemModels.ResistorDiode`

— Method`ResistorDiode(;name, R=1e-3)`

Implements the resistance across a valve following Ohm's law exhibiting diode like behaviour.

Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s)

Named parameters:

`R`

Resistance across the valve in mmHg*s/ml

`CirculatorySystemModels.ShiAtrium`

— Method`ShiAtrium(;name, V₀, p₀, Eₘᵢₙ, Eₘₐₓ, τ, τpwb, τpww)`

Implementation of the Atrium following Shi/Korakianitis.

Named parameters:

name name of the element

`V₀`

Unstressed chamber volume in ml

`p₀`

Unstressed chamber pressure in mmHg

`Eₘᵢₙ`

Minimum elastance (diastole) in mmHg/ml

`Eₘₐₓ`

Maximum elastance (systole) in mmHg/ml

`τ`

Length of cardiac cycle in s

`τpwb`

Atrial contraction time in s

`τpww`

Atrial offset time in s

`CirculatorySystemModels.ShiChamber`

— Method`ShiChamber(;name, V₀, p₀=0.0, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift=0.0)`

Implemention of a ventricle following Shi/Korakianitis.

This model uses external helper function `shiElastance`

which describes the elastance function.

Named parameters:

`V₀`

stress-free volume (zero pressure volume)

`p₀`

pressure offset (defaults to zero) this is present in the original paper, so is provided here for conformity. Defaults to 0.0

`Eₘᵢₙ`

minimum elastance

`τ`

pulse length

`τₑₛ`

end systolic time (end of rising cosine)

`τₑₚ`

end pulse time (end of falling cosine)

`Eshift`

: time shift of contraction (for atria), set to `0`

for ventricle

`inP`

: (Bool) formulate in dp/dt (default: false)

`CirculatorySystemModels.ShiElastance`

— Method`ShiElastance(t, Eₘᵢₙ, Eₘₐₓ, τ, τₑₛ, τₑₚ, Eshift)`

Elastance function `E(t)`

for ventricle simulation based on Shi's double cosine function.

Parameters:

`Eₘᵢₙ`

: minimum elastance (diastole)

`Eₘₐₓ`

: maximum elastance (systole)

`τₑₛ`

: end systolic time (end of rising cosine)

`τₑₚ`

: end of pulse time (end of falling cosine)

`Eshift`

: time shift of contraction (for atria), set to `0`

for ventricle

`CirculatorySystemModels.ShiHeart`

— Method`ShiHeart(; name, τ, LV_V₀, LV_p0, LV_Emin, LV_Emax, LV_τes, LV_τed, LV_Eshift, RV_V₀, RV_p0, RV_Emin, RV_Emax, RV_τes, RV_τed, RV_Eshift, LA_V₀, LA_p0, LA_Emin, LA_Emax, LA_τes, LA_τed, LA_Eshift, RA_V₀, RA_p0, RA_Emin, RA_Emax, RA_τes, RA_τed, RA_Eshift, AV_CQ, AV_Kp, AV_Kf, AV_Kb, AV_Kv, AV_θmax, AV_θmin, PV_CQ, PV_Kp, PV_Kf, PV_Kb, PV_Kv, PV_θmax, PV_θmin, MV_CQ, MV_Kp, MV_Kf, MV_Kb, MV_Kv, MV_θmax, MV_θmin, TV_CQ, TV_Kp, TV_Kf, TV_Kb, TV_Kv, TV_θmax, TV_θmin)`

Models a whole heart, made up of 2 ventricles (Left & Right Ventricle) and 2 atria (Left & Right atrium) created from the ShiChamber element. Includes the 4 corresponding valves (Aortic, Mitral, Pulmonary and Tricuspid valve) created using the ShiValve element.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s). Maximum and Minimum angles given in rad, to convert from degrees multiply angle by pi/180.

Named parameters:

`τ`

Length of the cardiac cycle in s

`LV_V₀`

Unstressed left ventricular volume in ml

`LV_p0`

Unstressed left ventricular pressure in mmHg

`LV_Emin`

Minimum left ventricular elastance (diastole) in mmHg/ml

`LV_Emax`

Maximum left ventricular elastance (systole) in mmHg/ml

`LV_τes`

Left ventricular end systolic time in s

`LV_τed`

Left ventricular end distolic time in s

`LV_Eshift`

Shift time of contraction - 0 for left ventricle

`RV_V₀`

Unstressed right ventricular volume in ml

`RV_p0`

Unstressed right ventricular pressure in mmHg

`RV_Emin`

Minimum right ventricular elastance (diastole) in mmHg/ml

`RV_Emax`

Maximum right ventricular elastance (systole) in mmHg/ml

`RV_τes`

Right ventricular end systolic time in s

`RV_τed`

Right ventricular end distolic time in s

`RV_Eshift`

Shift time of contraction - 0 for right ventricle

`LA_V₀`

Unstressed left atrial volume in ml

`LA_p0`

Unstressed left atrial pressure in mmHg

`LA_Emin`

Minimum left atrial elastance (diastole) in mmHg/ml

`LA_Emax`

Maximum left atrial elastance (systole) in mmHg/ml

`LA_τes`

Left atrial end systolic time in s

`LA_τed`

Left atrial end distolic time in s

`LA_Eshift`

Shift time of contraction in s

`RA_V₀`

Unstressed right atrial volume in ml

`RA_p0`

Unstressed right atrial pressure in mmHg

`RA_Emin`

Minimum right atrial elastance (diastole) in mmHg/ml

`RA_Emax`

Maximum right atrial elastance (systole) in mmHg/ml

`RA_τes`

Right atrial end systolic time in s

`RA_τed`

Right atrial end distolic time in s

`RA_Eshift`

Shift time of contraction in s

`AV_CQ`

Aortic valve flow coefficent in ml/(s*mmHg^0.5)

`AV_Kp`

Pressure effect on the aortic valve in rad/(s^2*mmHg)

`AV_Kf`

Frictional effect on the aortic valve in 1/s

`AV_Kb`

Fluid velocity effect on the aortic valve in rad/(s*m)

`AV_Kv`

Vortex effect on the aortic valve in rad/(s*m)

`AV_θmax`

Aortic valve maximum opening angle in rad

`AV_θmin`

Aortic valve minimum opening angle in rad

`MV_CQ`

Mitral valve flow coefficent in ml/(s*mmHg^0.5)

`MV_Kp`

Pressure effect on the mitral valve in rad/(s^2*mmHg)

`MV_Kf`

Frictional effect on the mitral valve in 1/s

`MV_Kb`

Fluid velocity effect on the mitral valve in rad/(s*m)

`MV_Kv`

Vortex effect on the mitral valve in rad/(s*m)

`MV_θmax`

Mitral valve maximum opening angle in rad

`MV_θmin`

Mitral valve minimum opening angle in rad

`PV_CQ`

Pulmonary valve flow coefficent in ml/(s*mmHg^0.5)

`PV_Kp`

Pressure effect on the pulmonary valve in rad/(s^2*mmHg)

`PV_Kf`

Frictional effect on the pulmonary valve in 1/s

`PV_Kb`

Fluid velocity effect on the pulmonary valve in rad/(s*m)

`PV_Kv`

Vortex effect on the pulmonary valve in rad/(s*m)

`PV_θmax`

Pulmonary valve maximum opening angle in rad

`PV_θmin`

Pulmonary valve minimum opening angle in rad

`TV_CQ`

Tricuspid valve flow coefficent in ml/(s*mmHg^0.5)

`TV_Kp`

Pressure effect on the tricuspid valve in rad/(s^2*mmHg)

`TV_Kf`

Frictional effect on the tricuspid valve in 1/s

`TV_Kb`

Fluid velocity effect on the tricuspid valve in rad/(s*m)

`TV_Kv`

Vortex effect on the pulmonary valve in rad/(s*m)

`TV_θmax`

Tricuspid valve maximum opening angle in rad

`TV_θmin`

Tricuspid valve minimum opening angle in rad

`CirculatorySystemModels.ShiPulmonaryLoop`

— Method`ShiPulmonaryLoop(; name, PAS_C, PAS_R, PAS_L, PAT_C, PAT_R, PAT_L, PAR_R, PCP_R, PVN_C, PVN_R)`

Implements systemic loop as written by Shi in [Shi].

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s).

Named parameters:

`PAS_C`

: Artery sinus compliance in ml/mmHg

`PAS_R`

: Artery sinus resistance in mmHg*s/ml

`PAS_L`

: Artery sinus inductance in mmHg*s^2/ml

`PAT_C`

: Artery compliance in ml/mmHg

`PAT_R`

: Artery resistance in mmHg*s/ml

`PAT_L`

: Artery inductance in mmHg*s^2/ml

`PAR_R`

: Arteriole resistance in mmHg*s/ml

`PCP_R`

: Capillary resistance in mmHg*s/ml

`PVN_C`

: Vein compliance in ml/mmHg

`PVN_R`

: Vein resistance in mmHg*s/ml

`CirculatorySystemModels.ShiSystemicLoop`

— Method`ShiSystemicLoop(; name, SAS_C, SAS_R, SAS_L, SAT_C, SAT_R, SAT_L, SAR_R, SCP_R, SVN_C, SVN_R)`

Implements systemic loop as written by Shi in [Shi].

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s).

Named parameters:

`SAS_C`

: Aortic sinus compliance in ml/mmHg

`SAS_R`

: Aortic sinus resistance in mmHg*s/ml

`SAS_L`

: Aortic sinus inductance in mmHg*s^2/ml

`SAT_C`

: Artery compliance in ml/mmHg

`SAT_R`

: Artery resistance in mmHg*s/ml

`SAT_L`

: Artery inductance in mmHg*s^2/ml

`SAR_R`

: Arteriole resistance in mmHg*s/ml

`SCP_R`

: Capillary resistance in mmHg*s/ml

`SVN_C`

: Vein compliance in ml/mmHg

`SVN_R`

: Vein resistance in mmHg*s/ml

`CirculatorySystemModels.ShiValve`

— Method`ShiValve(; name, CQ, Kp, Kf, Kb, Kv, θmax, θmin)`

Implements the Shi description for valve opening and closing, full description in [Shi].

Parameters are in the cm, g, s system. Pressure in mmHg. Flow in cm^3/s (ml/s) Maximum and Minimum angles given in rad, to convert from degrees multiply angle by pi/180.

Named parameters:

`CQ`

Flow coefficent in ml/(s*mmHg^0.5)

`Kp`

Pressure effect on the valve in rad/(s^2*mmHg)

`Kf`

Frictional effect on the valve in 1/s

`Kb`

Fluid velocity effect on the valve in rad/(s*m)

`Kv`

Vortex effect on the valve in rad/(s*m)

`θmax`

Valve maximum opening angle in rad

`θmin`

Valve minimum opening angle in rad

`CirculatorySystemModels.VariableElastance`

— Method`VariableElastance(; name, V₀=0.0, C=1.0, Escale=1.0, fun, inP=false, has_ep=false, has_variable_ep=false, p₀=0.0)`

`VariableElastance`

is defined based on the `Elastance`

element, but has a time varying elastance function modelling the contraction of muscle fibres.

Named parameters:

`V₀`

: stress-free volume (zero pressure volume)

`Escale`

: scaling factor (elastance factor)

`fun`

: function object for elastance (must be `fun(t)`

)

`inP`

: (Bool) formulate in dp/dt (default: false)

`has_ep`

: (Bool) if true, add a parameter `p₀`

for pressure offset e.g., for thoracic pressure (default: false)

`p₀`

: External pressure in mmHg (e.g., thorax pressure, default: 0.0) *Note: if this argument is set, it will be used, even if `has*ep`is`

false`.`

has*ep only controls ifp₀` will be exposed as a parameter!*

has*variable*ep`: (Bool) expose pin for variable external pressure (default: false) This pin can be connected to another pin or function providing external pressure. _Note: if`

has*variable*ep`is set to`

true`this pin is created, independent of`

has*ep`!*

`CirculatorySystemModels.WK3`

— Method`WK3(;name, Rc=1.0, Rp=1.0, C=1.0)`

Implements the 3 element windkessel model.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s)

Named parameters:

`Rc`

: Characteristic impedence in mmHg*s/ml

`Rp`

: Peripheral resistance in mmHg*s/ml

`C`

: Arterial compliance in ml/mmHg

`CirculatorySystemModels.WK3E`

— Method`WK3E(;name, Rc=1.0, Rp=1.0, E=1.0)`

Implements the 3 element windkessel model. With a vessel elastance instead of a capacitor.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s)

Named parameters:

`Rc`

: Characteristic impedence in mmHg*s/ml

`Rp`

: Peripheral resistance in mmHg*s/ml

`E`

: Arterial elastance in mmHg/ml

`CirculatorySystemModels.WK4_P`

— Method`WK4_P(;name, Rc=1.0, L=1.0, Rp=1.0, C=1.0)`

Implements the 4 element windkessel model with parallel inertance.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s)

Named parameters:

`Rc`

: Characteristic impedence in mmHg*s/ml

`L`

: Inertance/Inductance in mmHg*s^2*ml^-1

`Rp`

: Peripheral resistance in mmHg*s/ml

`C`

: Arterial compliance in ml/mmHg

`CirculatorySystemModels.WK4_PE`

— Method`WK4_PE(;name, Rc=1.0, L=1.0, Rp=1.0, E=1.0)`

Implements the 4 element windkessel model with parallel inertance. With a vessel elastance instead of a capacitor.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s)

Named parameters:

`Rc`

: Characteristic impedence in mmHg*s/ml

`L`

: Inertance/Inductance in mmHg*s^2*ml^-1

`Rp`

: Peripheral resistance in mmHg*s/ml

`E`

: Arterial elastance in mmHg/ml

`CirculatorySystemModels.WK4_S`

— Method`WK4_S(;name, Rc=1.0, L=1.0, Rp=1.0, C=1.0)`

Implements the 4 element windkessel model with serial inertance.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s)

Named parameters:

`Rc`

: Characteristic impedence in mmHg*s/ml

`L`

: Inertance/Inductance in mmHg*s^2*ml^-1

`Rp`

: Peripheral resistance in mmHg*s/ml

`C`

: Arterial compliance in ml/mmHg

`CirculatorySystemModels.WK4_SE`

— Method`WK4_SE(;name, Rc=1.0, L=1.0, Rp=1.0, E=1.0)`

Implements the 4 element windkessel model with serial inertance. With a vessel elastance instead of a capacitor.

Parameters are in the cm, g, s system. Pressure in mmHg. Volume in ml. Flow in cm^3/s (ml/s)

Named parameters:

`Rc`

: Characteristic impedence in mmHg*s/ml

`L`

: Inertance/Inductance in mmHg*s^2*ml^-1

`Rp`

: Peripheral resistance in mmHg*s/ml

`E`

: Arterial elastance in mmHg/ml