AMIP Driver
Overview
AMIP is a standard experimental protocol of the Program for Climate Model Diagnosis & Intercomparison (PCMDI). It is used as a model benchmark for the atmospheric and land model components, while sea-surface temperatures (SST) and sea-ice concentration (SIC) are prescribed using time-interpolations between monthly observed data. We use standard data files with original sources:
- SST and SIC: https://gdex.ucar.edu/dataset/158_asphilli.html
- land-sea mask: https://www.ncl.ucar.edu/Applications/Data/#cdf
For more information, see the PCMDI's specifications for AMIP I and AMIP II.
This driver contains two modes. The full AMIP
mode and a SlabPlanet
(all surfaces are thermal slabs) mode. Since AMIP
is not a closed system, the SlabPlanet
mode is useful for checking conservation properties of the coupling.
Logging
When Julia 1.10+ is used interactively, stacktraces contain reduced type information to make them shorter. Given that ClimaCore objects are heavily parametrized, non-abbreviated stacktraces are hard to read, so we force abbreviated stacktraces even in non-interactive runs. (See also Base.type_limited_string_from_context()
)
redirect_stderr(IOContext(stderr, :stacktrace_types_limited => Ref(false)))
Configuration initialization
Here we import standard Julia packages, ClimaESM packages, parse in command-line arguments (if none are specified then the defaults in cli_options.jl
apply). We then specify the input data file names. If these are not already downloaded, include artifacts/download_artifacts.jl
.
Package Import
# standard packages
import Dates
import YAML
ClimaESM packages
import ClimaAtmos as CA
import ClimaComms
import ClimaCore as CC
Coupler specific imports
import ClimaCoupler
import ClimaCoupler:
BCReader,
ConservationChecker,
Checkpointer,
Diagnostics,
FieldExchanger,
FluxCalculator,
Interfacer,
Regridder,
TimeManager,
Utilities
pkg_dir = pkgdir(ClimaCoupler)
Helper Functions
These will be eventually moved to their respective component model and diagnostics packages, and so they should not contain any internals of the ClimaCoupler source code, except extensions to the Interfacer functions.
# helpers for component models
include("components/atmosphere/climaatmos.jl")
include("components/land/climaland_bucket.jl")
include("components/ocean/slab_ocean.jl")
include("components/ocean/prescr_seaice.jl")
include("components/ocean/eisenman_seaice.jl")
# helpers for user-specified IO
include("user_io/user_diagnostics.jl")
include("user_io/user_logging.jl")
include("user_io/debug_plots.jl")
include("user_io/io_helpers.jl")
Configuration Dictionaries
Each simulation mode has its own configuration dictionary. The config_dict
of each simulation is a merge of the default configuration dictionary and the simulation-specific configuration dictionary, which allows the user to override the default settings.
We can additionally pass the configuration dictionary to the component model initializers, which will then override the default settings of the component models.
# coupler simulation default configuration
include("cli_options.jl")
parsed_args = parse_commandline(argparse_settings())
if isinteractive()
parsed_args["config_file"] =
isnothing(parsed_args["config_file"]) ? joinpath(pkg_dir, "config/ci_configs/interactive_debug.yml") :
parsed_args["config_file"]
parsed_args["job_id"] = "interactive_debug"
end
# the unique job id should be passed in via the command line
job_id = parsed_args["job_id"]
@assert !isnothing(job_id) "job_id must be passed in via the command line"
# read in config dictionary from file, overriding the coupler defaults in `parsed_args`
config_dict = YAML.load_file(parsed_args["config_file"])
config_dict = merge(parsed_args, config_dict)
comms_ctx = Utilities.get_comms_context(parsed_args)
ClimaComms.init(comms_ctx)
# get component model dictionaries (if applicable)
atmos_config_dict, config_dict = get_atmos_config_dict(config_dict, job_id)
atmos_config_object = CA.AtmosConfig(atmos_config_dict)
# read in some parsed command line arguments, required by this script
mode_name = config_dict["mode_name"]
energy_check = config_dict["energy_check"]
const FT = config_dict["FLOAT_TYPE"] == "Float64" ? Float64 : Float32
land_sim_name = "bucket"
t_end = Float64(time_to_seconds(config_dict["t_end"]))
t_start = 0.0
tspan = (t_start, t_end)
Δt_cpl = Float64(config_dict["dt_cpl"])
saveat = Float64(time_to_seconds(config_dict["dt_save_to_sol"]))
date0 = date = Dates.DateTime(config_dict["start_date"], Dates.dateformat"yyyymmdd")
mono_surface = config_dict["mono_surface"]
hourly_checkpoint = config_dict["hourly_checkpoint"]
hourly_checkpoint_dt = config_dict["hourly_checkpoint_dt"]
restart_dir = config_dict["restart_dir"]
restart_t = Int(config_dict["restart_t"])
evolving_ocean = config_dict["evolving_ocean"]
dt_rad = config_dict["dt_rad"]
use_coupler_diagnostics = config_dict["use_coupler_diagnostics"]
Setup Communication Context
We set up communication context for CPU single thread/CPU with MPI/GPU. If no device is passed to ClimaComms.context()
then ClimaComms
automatically selects the device from which this code is called.
# make sure we don't use animations for GPU runs
if comms_ctx.device isa ClimaComms.CUDADevice
config_dict["anim"] = false
end
I/O Directory Setup
setup_output_dirs
returns dir_paths.output = COUPLER_OUTPUT_DIR
, which is the directory where the output of the simulation will be saved, and dir_paths.artifacts
is the directory where the plots (from postprocessing and the conservation checks) of the simulation will be saved. dir_paths.regrid
is the directory where the regridding temporary files will be saved.
COUPLER_OUTPUT_DIR = joinpath(config_dict["coupler_output_dir"], joinpath(mode_name, job_id))
dir_paths = setup_output_dirs(output_dir = COUPLER_OUTPUT_DIR, comms_ctx = comms_ctx)
if ClimaComms.iamroot(comms_ctx)
@info(dir_paths.output)
config_dict["print_config_dict"] && @info(config_dict)
end
Data File Paths
The data files are downloaded from the ClimaCoupler
artifacts directory. If the data files are not present, they are downloaded from the original sources.
include(joinpath(pkgdir(ClimaCoupler), "artifacts", "artifact_funcs.jl"))
sst_data = artifact_data(sst_dataset_path(), "sst", "SST", dir_paths.regrid, date0, t_start, t_end, comms_ctx)
sic_data = artifact_data(sic_dataset_path(), "sic", "SEAICE", dir_paths.regrid, date0, t_start, t_end, comms_ctx)
co2_data = artifact_data(co2_dataset_path(), "mauna_loa_co2", "co2", dir_paths.regrid, date0, t_start, t_end, comms_ctx)
land_mask_data = artifact_data(mask_dataset_path(), "seamask")
Component Model Initialization
Here we set initial and boundary conditions for each component model. Each component model is required to have an init
function that returns a ComponentModelSimulation
object (see Interfacer
docs for more details).
Atmosphere
This uses the ClimaAtmos.jl
model, with parameterization options specified in the atmos_config_object
dictionary.
Utilities.show_memory_usage(comms_ctx)
# init atmos model component
atmos_sim = atmos_init(atmos_config_object);
Utilities.show_memory_usage(comms_ctx)
thermo_params = get_thermo_params(atmos_sim) # TODO: this should be shared by all models #342
Boundary Space
We use a common Space
for all global surfaces. This enables the MPI processes to operate on the same columns in both the atmospheric and surface components, so exchanges are parallelized. Note this is only possible when the atmosphere and surface are of the same horizontal resolution.
Currently, we use the 2D surface space from the atmosphere model as our shared space, but ultimately we want this to specified within the coupler and passed to all component models. (see issue #665)
# init a 2D boundary space at the surface
boundary_space = CC.Spaces.horizontal_space(atmos_sim.domain.face_space) # TODO: specify this in the coupler and pass it to all component models #665
Land-sea Fraction
This is a static field that contains the area fraction of land and sea, ranging from 0 to 1. If applicable, sea ice is included in the sea fraction at this stage. Note that land-sea area fraction is different to the land-sea mask, which is a binary field (masks are used internally by the coupler to indicate passive cells that are not populated by a given component model).
land_area_fraction =
FT.(
Regridder.land_fraction(
FT,
dir_paths.regrid,
comms_ctx,
land_mask_data,
"LSMASK",
boundary_space,
mono = mono_surface,
)
)
Utilities.show_memory_usage(comms_ctx)
Surface Models: AMIP and SlabPlanet Modes
Both modes evolve ClimaLand.jl
's bucket model.
In the AMIP
mode, all ocean properties are prescribed from a file, while sea-ice temperatures are calculated using observed SIC and assuming a 2m thickness of the ice.
In the SlabPlanet
mode, all ocean and sea ice are dynamical models, namely thermal slabs, with different parameters. We have several SlabPlanet
versions
slabplanet
= land + slab oceanslabplanet_aqua
= slab ocean everywhereslabplanet_terra
= land everywhereslabplanet_eisenman
= land + slab ocean + slab sea ice with an evolving thickness
In this section of the code, we initialize all component models and read in the prescribed data we'll be using. The specific models and data that are set up depend on which mode we're running.
ClimaComms.iamroot(comms_ctx) && @info(mode_name)
if mode_name == "amip"
ClimaComms.iamroot(comms_ctx) && @info("AMIP boundary conditions - do not expect energy conservation")
# land model
land_sim = bucket_init(
FT,
tspan,
config_dict["land_domain_type"],
config_dict["land_albedo_type"],
config_dict["land_temperature_anomaly"],
dir_paths.regrid;
dt = Δt_cpl,
space = boundary_space,
saveat = saveat,
area_fraction = land_area_fraction,
date_ref = date0,
t_start = t_start,
energy_check = energy_check,
)
# ocean stub
SST_info = BCReader.bcfile_info_init(
FT,
dir_paths.regrid,
sst_data,
"SST",
boundary_space,
comms_ctx,
interpolate_daily = true,
scaling_function = scale_sst, ## convert to Kelvin
land_fraction = land_area_fraction,
date0 = date0,
mono = mono_surface,
)
BCReader.update_midmonth_data!(date0, SST_info)
SST_init = BCReader.interpolate_midmonth_to_daily(date0, SST_info)
ocean_sim = Interfacer.SurfaceStub((;
T_sfc = SST_init,
ρ_sfc = CC.Fields.zeros(boundary_space),
z0m = FT(1e-3),
z0b = FT(1e-3),
beta = FT(1),
α_direct = CC.Fields.ones(boundary_space) .* FT(0.06),
α_diffuse = CC.Fields.ones(boundary_space) .* FT(0.06),
area_fraction = (FT(1) .- land_area_fraction),
phase = TD.Liquid(),
thermo_params = thermo_params,
))
# sea ice model
SIC_info = BCReader.bcfile_info_init(
FT,
dir_paths.regrid,
sic_data,
"SEAICE",
boundary_space,
comms_ctx,
interpolate_daily = true,
scaling_function = scale_sic, ## convert to fraction
land_fraction = land_area_fraction,
date0 = date0,
mono = mono_surface,
)
BCReader.update_midmonth_data!(date0, SIC_info)
SIC_init = BCReader.interpolate_midmonth_to_daily(date0, SIC_info)
ice_fraction = get_ice_fraction.(SIC_init, mono_surface)
ice_sim = ice_init(
FT;
tspan = tspan,
dt = Δt_cpl,
space = boundary_space,
saveat = saveat,
area_fraction = ice_fraction,
thermo_params = thermo_params,
)
# CO2 concentration from temporally varying file
CO2_info = BCReader.bcfile_info_init(
FT,
dir_paths.regrid,
co2_data,
"co2",
boundary_space,
comms_ctx,
interpolate_daily = true,
land_fraction = ones(boundary_space),
date0 = date0,
mono = mono_surface,
)
BCReader.update_midmonth_data!(date0, CO2_info)
CO2_init = BCReader.interpolate_midmonth_to_daily(date0, CO2_info)
Interfacer.update_field!(atmos_sim, Val(:co2), CO2_init)
mode_specifics = (; name = mode_name, SST_info = SST_info, SIC_info = SIC_info, CO2_info = CO2_info)
Utilities.show_memory_usage(comms_ctx)
elseif mode_name in ("slabplanet", "slabplanet_aqua", "slabplanet_terra")
land_area_fraction = mode_name == "slabplanet_aqua" ? land_area_fraction .* 0 : land_area_fraction
land_area_fraction = mode_name == "slabplanet_terra" ? land_area_fraction .* 0 .+ 1 : land_area_fraction
# land model
land_sim = bucket_init(
FT,
tspan,
config_dict["land_domain_type"],
config_dict["land_albedo_type"],
config_dict["land_temperature_anomaly"],
dir_paths.regrid;
dt = Δt_cpl,
space = boundary_space,
saveat = saveat,
area_fraction = land_area_fraction,
date_ref = date0,
t_start = t_start,
energy_check = energy_check,
)
# ocean model
ocean_sim = ocean_init(
FT;
tspan = tspan,
dt = Δt_cpl,
space = boundary_space,
saveat = saveat,
area_fraction = (FT(1) .- land_area_fraction), ## NB: this ocean fraction includes areas covered by sea ice (unlike the one contained in the cs)
thermo_params = thermo_params,
evolving = evolving_ocean,
)
# sea ice stub (here set to zero area coverage)
ice_sim = Interfacer.SurfaceStub((;
T_sfc = CC.Fields.ones(boundary_space),
ρ_sfc = CC.Fields.zeros(boundary_space),
z0m = FT(0),
z0b = FT(0),
beta = FT(1),
α_direct = CC.Fields.ones(boundary_space) .* FT(1),
α_diffuse = CC.Fields.ones(boundary_space) .* FT(1),
area_fraction = CC.Fields.zeros(boundary_space),
phase = TD.Ice(),
thermo_params = thermo_params,
))
mode_specifics = (; name = mode_name, SST_info = nothing, SIC_info = nothing)
Utilities.show_memory_usage(comms_ctx)
elseif mode_name == "slabplanet_eisenman"
# land model
land_sim = bucket_init(
FT,
tspan,
config_dict["land_domain_type"],
config_dict["land_albedo_type"],
config_dict["land_temperature_anomaly"],
dir_paths.regrid;
dt = Δt_cpl,
space = boundary_space,
saveat = saveat,
area_fraction = land_area_fraction,
date_ref = date0,
t_start = t_start,
energy_check = energy_check,
)
# ocean stub (here set to zero area coverage)
ocean_sim = ocean_init(
FT;
tspan = tspan,
dt = Δt_cpl,
space = boundary_space,
saveat = saveat,
area_fraction = CC.Fields.zeros(boundary_space), # zero, since ML is calculated below
thermo_params = thermo_params,
)
# sea ice + ocean model
ice_sim = eisenman_seaice_init(
FT,
tspan,
space = boundary_space,
area_fraction = (FT(1) .- land_area_fraction),
dt = Δt_cpl,
saveat = saveat,
thermo_params = thermo_params,
)
mode_specifics = (; name = mode_name, SST_info = nothing, SIC_info = nothing)
Utilities.show_memory_usage(comms_ctx)
end
Coupler Initialization
The coupler needs to contain exchange information, access all component models, and manage the calendar, among other responsibilities. Objects containing information to enable these are initialized here and saved in the global CoupledSimulation
struct, cs
, below.
# coupler exchange fields
coupler_field_names = (
:T_S,
:z0m_S,
:z0b_S,
:ρ_sfc,
:q_sfc,
:surface_direct_albedo,
:surface_diffuse_albedo,
:beta,
:F_turb_energy,
:F_turb_moisture,
:F_turb_ρτxz,
:F_turb_ρτyz,
:F_radiative,
:P_liq,
:P_snow,
:radiative_energy_flux_toa,
:P_net,
:temp1,
:temp2,
)
coupler_fields =
NamedTuple{coupler_field_names}(ntuple(i -> CC.Fields.zeros(boundary_space), length(coupler_field_names)))
Utilities.show_memory_usage(comms_ctx)
# model simulations
model_sims = (atmos_sim = atmos_sim, ice_sim = ice_sim, land_sim = land_sim, ocean_sim = ocean_sim);
# dates
dates = (; date = [date], date0 = [date0], date1 = [Dates.firstdayofmonth(date0)], new_month = [false])
Online Diagnostics
The user can write custom diagnostics in the user_diagnostics.jl
file. Note, this will be replaced by the diagnostics framework currently in ClimaAtmos, once it is abstracted into a more general package, so we can use it to save fields from surface models.
if use_coupler_diagnostics
monthly_3d_diags = Diagnostics.init_diagnostics(
(:T, :u, :q_tot, :q_liq_ice),
atmos_sim.domain.center_space;
save = TimeManager.Monthly(),
operations = (; accumulate = Diagnostics.TimeMean([Int(0)])),
output_dir = dir_paths.output,
name_tag = "monthly_mean_3d_",
)
monthly_2d_diags = Diagnostics.init_diagnostics(
(:precipitation_rate, :toa_fluxes, :T_sfc, :turbulent_energy_fluxes),
boundary_space;
save = TimeManager.Monthly(),
operations = (; accumulate = Diagnostics.TimeMean([Int(0)])),
output_dir = dir_paths.output,
name_tag = "monthly_mean_2d_",
)
diagnostics = (monthly_3d_diags, monthly_2d_diags)
Utilities.show_memory_usage(comms_ctx)
else
diagnostics = ()
end
Initialize Conservation Checks
The conservation checks are used to monitor the global energy and water conservation of the coupled system. The checks are only applicable to the slabplanet
mode, as the amip
mode is not a closed system. The conservation checks are initialized here and saved in a global ConservationChecks
struct, conservation_checks
, which is then stored as part of the larger cs
struct.
# init conservation info collector
conservation_checks = nothing
if energy_check
@assert(
mode_name[1:10] == "slabplanet" && !CA.is_distributed(ClimaComms.context(boundary_space)),
"Only non-distributed slabplanet allowable for energy_check"
)
conservation_checks = (;
energy = ConservationChecker.EnergyConservationCheck(model_sims),
water = ConservationChecker.WaterConservationCheck(model_sims),
)
end
Initialize Callbacks
Callbacks are used to update at a specified interval. The callbacks are initialized here and saved in a global Callbacks
struct, callbacks
. The trigger_callback!
function is used to call the callback during the simulation below.
The frequency of the callbacks is specified in the HourlyCallback
and MonthlyCallback
structs. The func
field specifies the function to be called, the ref_date
field specifies the first date for the callback, and the active
field specifies whether the callback is active or not.
The currently implemented callbacks are:
checkpoint_cb
: generates a checkpoint of all model states at a specified interval. This is mainly used for restarting simulations.update_firstdayofmonth!_cb
: generates a callback to update the first day of the month for monthly message print (and other monthly operations).albedo_cb
: for the amip mode, the water albedo is time varying (since the reflectivity of water depends on insolation and wave characteristics, with the latter being approximated from wind speed). It is updated at the same frequency as the atmospheric radiation. NB: Eventually, we will call all of radiation from the coupler, in addition to the albedo calculation.
checkpoint_cb = TimeManager.HourlyCallback(
dt = hourly_checkpoint_dt,
func = checkpoint_sims,
ref_date = [dates.date[1]],
active = hourly_checkpoint,
) # 20 days
update_firstdayofmonth!_cb = TimeManager.MonthlyCallback(
dt = FT(1),
func = TimeManager.update_firstdayofmonth!,
ref_date = [dates.date1[1]],
active = true,
)
dt_water_albedo = parse(FT, filter(x -> !occursin(x, "hours"), dt_rad))
albedo_cb = TimeManager.HourlyCallback(
dt = dt_water_albedo,
func = FluxCalculator.water_albedo_from_atmosphere!,
ref_date = [dates.date[1]],
active = mode_name == "amip",
)
callbacks =
(; checkpoint = checkpoint_cb, update_firstdayofmonth! = update_firstdayofmonth!_cb, water_albedo = albedo_cb)
Initialize turbulent fluxes
Decide on the type of turbulent flux partition, partitioned or combined (see FluxCalculator
documentation for more details).
turbulent_fluxes = nothing
if config_dict["turb_flux_partition"] == "PartitionedStateFluxes"
turbulent_fluxes = FluxCalculator.PartitionedStateFluxes()
elseif config_dict["turb_flux_partition"] == "CombinedStateFluxesMOST"
turbulent_fluxes = FluxCalculator.CombinedStateFluxesMOST()
else
error("turb_flux_partition must be either PartitionedStateFluxes or CombinedStateFluxesMOST")
end
Initialize Coupled Simulation
The coupled simulation is initialized here and saved in a global CoupledSimulation
struct, cs
. It contains all the information required to run the coupled simulation, including the communication context, the dates, the boundary space, the coupler fields, the configuration dictionary, the conservation checks, the time span, the time step, the land fraction, the model simulations, the mode specifics, the diagnostics, the callbacks, and the directory paths.
cs = Interfacer.CoupledSimulation{FT}(
comms_ctx,
dates,
boundary_space,
coupler_fields,
config_dict,
conservation_checks,
[tspan[1], tspan[2]],
atmos_sim.integrator.t,
Δt_cpl,
(; land = land_area_fraction, ocean = zeros(boundary_space), ice = zeros(boundary_space)),
model_sims,
mode_specifics,
diagnostics,
callbacks,
dir_paths,
turbulent_fluxes,
thermo_params,
);
Utilities.show_memory_usage(comms_ctx)
Restart component model states if specified
If a restart directory is specified and contains output files from the checkpoint_cb
callback, the component model states are restarted from those files. The restart directory is specified in the config_dict
dictionary. The restart_t
field specifies the time step at which the restart is performed.
if restart_dir !== "unspecified"
for sim in cs.model_sims
if Checkpointer.get_model_prog_state(sim) !== nothing
Checkpointer.restart_model_state!(sim, comms_ctx, restart_t; input_dir = restart_dir)
end
end
end
Initialize Component Model Exchange
We need to ensure all models' initial conditions are shared to enable the coupler to calculate the first instance of surface fluxes. Some auxiliary variables (namely surface humidity and radiation fluxes) depend on initial conditions of other component models than those in which the variables are calculated, which is why we need to step these models in time and/or reinitialize them. The concrete steps for proper initialization are:
1.coupler updates surface model area fractions
Regridder.update_surface_fractions!(cs)
2.surface density (ρ_sfc
): calculated by the coupler by adiabatically extrapolating atmospheric thermal state to the surface. For this, we need to import surface and atmospheric fields. The model sims are then updated with the new surface density.
FieldExchanger.import_combined_surface_fields!(cs.fields, cs.model_sims, cs.turbulent_fluxes)
FieldExchanger.import_atmos_fields!(cs.fields, cs.model_sims, cs.boundary_space, cs.turbulent_fluxes)
FieldExchanger.update_model_sims!(cs.model_sims, cs.fields, cs.turbulent_fluxes)
3.surface vapor specific humidity (q_sfc
): step surface models with the new surface density to calculate their respective q_sfc
internally
# TODO: the q_sfc calculation follows the design of the bucket q_sfc, but it would be neater to abstract this from step! (#331)
Interfacer.step!(land_sim, Δt_cpl)
Interfacer.step!(ocean_sim, Δt_cpl)
Interfacer.step!(ice_sim, Δt_cpl)
4.turbulent fluxes: now we have all information needed for calculating the initial turbulent surface fluxes using either the combined state or the partitioned state method
if cs.turbulent_fluxes isa FluxCalculator.CombinedStateFluxesMOST
# import the new surface properties into the coupler (note the atmos state was also imported in step 3.)
FieldExchanger.import_combined_surface_fields!(cs.fields, cs.model_sims, cs.turbulent_fluxes) # i.e. T_sfc, albedo, z0, beta, q_sfc
# calculate turbulent fluxes inside the atmos cache based on the combined surface state in each grid box
FluxCalculator.combined_turbulent_fluxes!(cs.model_sims, cs.fields, cs.turbulent_fluxes) # this updates the atmos thermo state, sfc_ts
elseif cs.turbulent_fluxes isa FluxCalculator.PartitionedStateFluxes
# calculate turbulent fluxes in surface models and save the weighted average in coupler fields
FluxCalculator.partitioned_turbulent_fluxes!(
cs.model_sims,
cs.fields,
cs.boundary_space,
FluxCalculator.MoninObukhovScheme(),
cs.thermo_params,
)
# update atmos sfc_conditions for surface temperature
# TODO: this is hard coded and needs to be simplified (req. CA modification) (#479)
new_p = get_new_cache(atmos_sim, cs.fields)
CA.SurfaceConditions.update_surface_conditions!(atmos_sim.integrator.u, new_p, atmos_sim.integrator.t) ## sets T_sfc (but SF calculation not necessary - requires split functionality in CA)
atmos_sim.integrator.p.precomputed.sfc_conditions .= new_p.precomputed.sfc_conditions
end
5.reinitialize models + radiative flux: prognostic states and time are set to their initial conditions. For atmos, this also triggers the callbacks and sets a nonzero radiation flux (given the new sfc_conditions)
FieldExchanger.reinit_model_sims!(cs.model_sims)
6.update all fluxes: coupler re-imports updated atmos fluxes (radiative fluxes for both turbulent_fluxes
types and also turbulent fluxes if turbulent_fluxes isa CombinedStateFluxesMOST
, and sends them to the surface component models. If turbulent_fluxes isa PartitionedStateFluxes
atmos receives the turbulent fluxes from the coupler.
FieldExchanger.import_atmos_fields!(cs.fields, cs.model_sims, cs.boundary_space, cs.turbulent_fluxes)
FieldExchanger.update_model_sims!(cs.model_sims, cs.fields, cs.turbulent_fluxes)
Coupling Loop
The coupling loop is the main part of the simulation. It runs the component models sequentially for one coupling timestep (Δt_cpl
) at a time, and exchanges combined fields and calculates fluxes using the selected turbulent fluxes option. Note that we want to implement this in a dispatchable function to allow for other forms of timestepping (e.g. leapfrog).
function solve_coupler!(cs)
(; model_sims, Δt_cpl, tspan, comms_ctx) = cs
(; atmos_sim, land_sim, ocean_sim, ice_sim) = model_sims
ClimaComms.iamroot(comms_ctx) && @info("Starting coupling loop")
# step in time
for t in ((tspan[begin] + Δt_cpl):Δt_cpl:tspan[end])
cs.dates.date[1] = TimeManager.current_date(cs, t)
# print date on the first of month
if cs.dates.date[1] >= cs.dates.date1[1]
ClimaComms.iamroot(comms_ctx) && @show(cs.dates.date[1])
end
if cs.mode.name == "amip"
# update values of SST, SIC, and CO2 for this timestep
if cs.dates.date[1] >= BCReader.next_date_in_file(cs.mode.SST_info)
BCReader.update_midmonth_data!(cs.dates.date[1], cs.mode.SST_info)
end
SST_current = BCReader.interpolate_midmonth_to_daily(cs.dates.date[1], cs.mode.SST_info)
Interfacer.update_field!(ocean_sim, Val(:surface_temperature), SST_current)
if cs.dates.date[1] >= BCReader.next_date_in_file(cs.mode.SIC_info)
BCReader.update_midmonth_data!(cs.dates.date[1], cs.mode.SIC_info)
end
SIC_current =
get_ice_fraction.(
BCReader.interpolate_midmonth_to_daily(cs.dates.date[1], cs.mode.SIC_info),
cs.mode.SIC_info.mono,
)
Interfacer.update_field!(ice_sim, Val(:area_fraction), SIC_current)
if cs.dates.date[1] >= BCReader.next_date_in_file(cs.mode.CO2_info)
BCReader.update_midmonth_data!(cs.dates.date[1], cs.mode.CO2_info)
end
CO2_current = BCReader.interpolate_midmonth_to_daily(cs.dates.date[1], cs.mode.CO2_info)
Interfacer.update_field!(atmos_sim, Val(:co2), CO2_current)
# calculate and accumulate diagnostics at each timestep, if we're using diagnostics in this run
if !isempty(cs.diagnostics)
ClimaComms.barrier(comms_ctx)
Diagnostics.accumulate_diagnostics!(cs)
# save and reset monthly averages
Diagnostics.save_diagnostics(cs)
end
end
# compute global energy and water conservation checks
# (only for slabplanet if tracking conservation is enabled)
!isnothing(cs.conservation_checks) && ConservationChecker.check_conservation!(cs)
ClimaComms.barrier(comms_ctx)
# update water albedo from wind at dt_water_albedo
# (this will be extended to a radiation callback from the coupler)
TimeManager.trigger_callback!(cs, cs.callbacks.water_albedo)
# update the surface fractions for surface models,
# and update all component model simulations with the current fluxes stored in the coupler
Regridder.update_surface_fractions!(cs)
FieldExchanger.update_model_sims!(cs.model_sims, cs.fields, cs.turbulent_fluxes)
# step component model simulations sequentially for one coupling timestep (Δt_cpl)
FieldExchanger.step_model_sims!(cs.model_sims, t)
# update the coupler with the new surface properties and calculate the turbulent fluxes
FieldExchanger.import_combined_surface_fields!(cs.fields, cs.model_sims, cs.turbulent_fluxes) # i.e. T_sfc, surface_albedo, z0, beta
if cs.turbulent_fluxes isa FluxCalculator.CombinedStateFluxesMOST
FluxCalculator.combined_turbulent_fluxes!(cs.model_sims, cs.fields, cs.turbulent_fluxes) # this updates the surface thermo state, sfc_ts, in ClimaAtmos (but also unnecessarily calculates fluxes)
elseif cs.turbulent_fluxes isa FluxCalculator.PartitionedStateFluxes
# calculate turbulent fluxes in surfaces and save the weighted average in coupler fields
FluxCalculator.partitioned_turbulent_fluxes!(
cs.model_sims,
cs.fields,
cs.boundary_space,
FluxCalculator.MoninObukhovScheme(),
cs.thermo_params,
)
# update atmos sfc_conditions for surface temperature - TODO: this needs to be simplified (need CA modification)
new_p = get_new_cache(atmos_sim, cs.fields)
CA.SurfaceConditions.update_surface_conditions!(atmos_sim.integrator.u, new_p, atmos_sim.integrator.t) # to set T_sfc (but SF calculation not necessary - CA modification)
atmos_sim.integrator.p.precomputed.sfc_conditions .= new_p.precomputed.sfc_conditions
end
# update the coupler with the new atmospheric properties
FieldExchanger.import_atmos_fields!(cs.fields, cs.model_sims, cs.boundary_space, cs.turbulent_fluxes) # radiative and/or turbulent
# callback to update the fist day of month if needed (for BCReader)
TimeManager.trigger_callback!(cs, cs.callbacks.update_firstdayofmonth!)
# callback to checkpoint model state
TimeManager.trigger_callback!(cs, cs.callbacks.checkpoint)
end
return nothing
end
Precompilation of Coupling Loop
Here we run the entire coupled simulation for two timesteps to precompile everything for accurate timing of the overall simulation. After these two steps, we update the beginning and end of the simulation timespan to the correct values.
# run the coupled simulation for two timesteps to precompile
cs.tspan[2] = Δt_cpl * 2
solve_coupler!(cs)
# update the timespan to the correct values
cs.tspan[1] = Δt_cpl * 2
cs.tspan[2] = tspan[2]
# Run garbage collection before solving for more accurate memory comparison to ClimaAtmos
GC.gc()
Solving and Timing the Full Simulation
This is where the full coupling loop, solve_coupler!
is called for the full timespan of the simulation. We use the ClimaComms.@elapsed
macro to time the simulation on both CPU and GPU, and use this value to calculare the simulated years per day (SYPD) of the simulation.
walltime = ClimaComms.@elapsed comms_ctx.device begin
s = CA.@timed_str begin
solve_coupler!(cs)
end
end
ClimaComms.iamroot(comms_ctx) && @show(walltime)
# Use ClimaAtmos calculation to show the simulated years per day of the simulation (SYPD)
es = CA.EfficiencyStats(tspan, walltime)
sypd = CA.simulated_years_per_day(es)
@info "SYPD: $sypd"
# Save the SYPD and allocation information
if ClimaComms.iamroot(comms_ctx)
sypd_filename = joinpath(dir_paths.artifacts, "sypd.txt")
write(sypd_filename, "$sypd")
cpu_max_rss_GB = Utilities.show_memory_usage(comms_ctx)
cpu_max_rss_filename = joinpath(dir_paths.artifacts, "max_rss_cpu.txt")
write(cpu_max_rss_filename, cpu_max_rss_GB)
end
Postprocessing
All postprocessing is performed using the root process only, if applicable. Our postprocessing consists of outputting a number of plots and animations to visualize the model output.
The postprocessing includes:
- Energy and water conservation checks (if running SlabPlanet with checks enabled)
- Animations (if not running in MPI)
- AMIP plots of the final state of the model
- NCEP plots of reanalysis data
- Combined AMIP and NCEP plots
- Error against observations
- Optional additional atmosphere diagnostics plots
- Plots of useful coupler and component model fields for debugging
if ClimaComms.iamroot(comms_ctx)
# energy check plots
if !isnothing(cs.conservation_checks) && cs.mode.name[1:10] == "slabplanet"
@info "Conservation Check Plots"
ConservationChecker.plot_global_conservation(
cs.conservation_checks.energy,
cs,
config_dict["conservation_softfail"],
figname1 = joinpath(dir_paths.artifacts, "total_energy_bucket.png"),
figname2 = joinpath(dir_paths.artifacts, "total_energy_log_bucket.png"),
)
ConservationChecker.plot_global_conservation(
cs.conservation_checks.water,
cs,
config_dict["conservation_softfail"],
figname1 = joinpath(dir_paths.artifacts, "total_water_bucket.png"),
figname2 = joinpath(dir_paths.artifacts, "total_water_log_bucket.png"),
)
end
# sample animations (not compatible with MPI)
if !CA.is_distributed(comms_ctx) && config_dict["anim"]
@info "Animations"
include("user_io/viz_explorer.jl")
plot_anim(cs, dir_paths.artifacts)
end
# plotting AMIP results
if cs.mode.name == "amip" && !isempty(cs.diagnostics)
# plot data that correspond to the model's last save_hdf5 call (i.e., last month)
@info "AMIP plots"
# ClimaESM
include("user_io/amip_visualizer.jl")
post_spec = (;
T = (:regrid, :zonal_mean),
u = (:regrid, :zonal_mean),
q_tot = (:regrid, :zonal_mean),
toa_fluxes = (:regrid, :horizontal_slice),
precipitation_rate = (:regrid, :horizontal_slice),
T_sfc = (:regrid, :horizontal_slice),
turbulent_energy_fluxes = (:regrid, :horizontal_slice),
q_liq_ice = (:regrid, :zonal_mean),
)
plot_spec = (;
T = (; clims = (190, 320), units = "K"),
u = (; clims = (-50, 50), units = "m/s"),
q_tot = (; clims = (0, 30), units = "g/kg"),
toa_fluxes = (; clims = (-250, 250), units = "W/m^2"),
precipitation_rate = (clims = (0, 1e-4), units = "kg/m^2/s"),
T_sfc = (clims = (225, 310), units = "K"),
turbulent_energy_fluxes = (; clims = (-250, 250), units = "W/m^2"),
q_liq_ice = (; clims = (0, 10), units = "g/kg"),
)
amip_data, fig_amip = amip_paperplots(
post_spec,
plot_spec,
dir_paths.output,
files_root = ".monthly",
output_dir = dir_paths.artifacts,
)
# NCEP reanalysis
@info "NCEP plots"
include("user_io/ncep_visualizer.jl")
ncep_post_spec = (;
T = (:zonal_mean,),
u = (:zonal_mean,),
q_tot = (:zonal_mean,),
toa_fluxes = (:horizontal_slice,),
precipitation_rate = (:horizontal_slice,),
T_sfc = (:horizontal_slice,),
turbulent_energy_fluxes = (:horizontal_slice,),
)
ncep_plot_spec = plot_spec
ncep_data, fig_ncep = ncep_paperplots(
ncep_post_spec,
ncep_plot_spec,
dir_paths.output,
output_dir = dir_paths.artifacts,
month_date = cs.dates.date[1],
)
# combine AMIP and NCEP plots
plot_combined = Plots.plot(fig_amip, fig_ncep, layout = (2, 1), size = (1400, 1800))
Plots.png(joinpath(dir_paths.artifacts, "amip_ncep.png"))
# Compare against observations
if t_end > 84600 && config_dict["output_default_diagnostics"]
@info "Error against observations"
include("user_io/leaderboard.jl")
ClimaAnalysis = Leaderboard.ClimaAnalysis
compare_vars = ["pr", "rsut", "rlut"]
diagnostics_folder_path = atmos_sim.integrator.p.output_dir
leaderboard_base_path = dir_paths.artifacts
first_var = get(ClimaAnalysis.SimDir(diagnostics_folder_path), short_name = first(compare_vars))
diagnostics_times = ClimaAnalysis.times(first_var)
Remove the first spinup_months
months from the leaderboard
spinup_months = 6
spinup_cutoff = spinup_months * 30 * 86400.0
if diagnostics_times[end] > spinup_cutoff
filter!(x -> x > spinup_cutoff, diagnostics_times)
end
output_dates = Dates.DateTime(first_var.attributes["start_date"]) .+ Dates.Second.(diagnostics_times)
@info "Working with dates:"
@info output_dates
function compute_biases(dates)
if isempty(dates)
return map(x -> 0.0, compare_vars)
else
return Leaderboard.compute_biases(diagnostics_folder_path, compare_vars, dates)
end
end
function plot_biases(dates, biases, output_name)
isempty(dates) && return nothing
output_path = joinpath(leaderboard_base_path, "bias_$(output_name).png")
Leaderboard.plot_biases(biases; output_path)
end
ann_biases = compute_biases(output_dates)
plot_biases(output_dates, ann_biases, "total")
# collect all days between cs.dates.date0 and cs.dates.date
MAM, JJA, SON, DJF = Leaderboard.split_by_season(output_dates)
MAM_biases = compute_biases(MAM)
plot_biases(MAM, MAM_biases, "MAM")
JJA_biases = compute_biases(JJA)
plot_biases(JJA, JJA_biases, "JJA")
SON_biases = compute_biases(SON)
plot_biases(SON, SON_biases, "SON")
DJF_biases = compute_biases(DJF)
plot_biases(DJF, DJF_biases, "DJF")
rmses = map(
(index) -> Leaderboard.RMSEs(;
model_name = "CliMA",
ANN = ann_biases[index],
DJF = DJF_biases[index],
MAM = MAM_biases[index],
JJA = JJA_biases[index],
SON = SON_biases[index],
),
1:length(compare_vars),
)
Leaderboard.plot_leaderboard(rmses; output_path = joinpath(leaderboard_base_path, "bias_leaderboard.png"))
end
end
# plot extra atmosphere diagnostics if specified
if config_dict["ci_plots"]
@info "Generating CI plots"
include("user_io/ci_plots.jl")
make_plots(Val(:general_ci_plots), [atmos_sim.integrator.p.output_dir], dir_paths.artifacts)
end
# plot all model states and coupler fields (useful for debugging)
!CA.is_distributed(comms_ctx) && debug(cs, dir_paths.artifacts)
end
This page was generated using Literate.jl.