E. Kessler. On the continuity and distribution of water substance in atmospheric circulations. Atmospheric research 38, 109–145 (1995).
W. W. Grabowski. Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. Journal of the Atmospheric Sciences 55, 3283–3298 (1998).
C. M. Kaul, J. Teixeira and K. Suzuki. Sensitivities in large-eddy simulations of mixed-phase Arctic stratocumulus clouds using a simple microphysics approach. Monthly Weather Review 143, 4393–4421 (2015).
J.-P. Chen, T.-W. Hsieh, C.-Y. Lin and C.-K. Yu. Accurate parameterization of precipitation particles' fall speeds for bulk cloud microphysics schemes. Atmospheric Research 293 (2022).
V. I. Khvorostyanov and J. A. Curry. Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. Journal of the atmospheric sciences 59, 1872–1884 (2002).
M. Karrer, A. Seifert, C. Siewert, D. Ori, A. von Lerber and S. Kneifel. Ice Particle Properties Inferred from Aggregation Modelling. Journal of Advances in Modeling Earth Systems -1, e2020MS002066 (2020).
J. S. Marshall and W. M. Palmer. The distribution of raindrops with size. Journal of meteorology 5, 165–166 (1948).
W. W. Grabowski and P. K. Smolarkiewicz. Two-time-level semi-Lagrangian modeling of precipitating clouds. Monthly weather review 124, 487–497 (1996).
J. Y. Harrington, M. P. Meyers, R. L. Walko and W. R. Cotton. Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. Journal of the atmospheric sciences 52, 4344–4366 (1995).
S. A. Rutledge and P. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. Journal of the Atmospheric Sciences 40, 1185–1206 (1983).
S. A. Rutledge and P. V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. Journal of the Atmospheric Sciences 41, 2949–2972 (1984).
H. Morrison and A. Gettelman. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate 21, 3642–3659 (2008).
A. Seifert and K. D. Beheng. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorology and atmospheric physics 92, 45–66 (2006).
Y. Ogura and T. Takahashi. Numerical simulation of the life cycle of a thunderstorm cell. Mon. Wea. Rev 99, 895–911 (1971).
R. Wood. Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. Journal of the atmospheric sciences 62, 3034–3050 (2005).
B. J. Mason. Physics of clouds (Clarendon Press, 2010).
L.-P. Wang, C. N. Franklin, O. Ayala and W. W. Grabowski. Probability distributions of angle of approach and relative velocity for colliding droplets in a turbulent flow. Journal of the atmospheric sciences 63, 881–900 (2006).
M. Khairoutdinov and Y. Kogan. A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus. Monthly Weather Review 128, 229–243 (2000).
K. Beheng. A parameterization of warm cloud microphysical conversion processes. Atmospheric Research 33, 193–206 (1994).
G. Tripoli and W. Cotton. A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida. Journal of Applied Meteorology and Climatology 19, 1037–1063 (1980).
Y. Liu and P. Daum. Parameterization of the Autoconversion Process.Part I: Analytical Formulation of the Kessler-Type Parameterizations. Journal of the Atmospheric Sciences 61, 1539–1548 (2004).
Y. Liu and J. Hallett. The ‘1/3’ power law between effective radius and liquid-water content. Quarterly Journal of the Royal Meteorological Society 123, 1789–1795 (1997).
R. Gunn and G. D. Kinzer. The terminal velocity of fall for water droplets in stagnant air. Journal of the Atmospheric Sciences 6, 243–248 (1949).
H. Morrison and J. A. Milbrandt. Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. Journal of the Atmospheric Sciences 72, 287–311 (2015).
P. R. Brown and P. N. Francis. Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe. Journal of Atmospheric and Oceanic Technology 12, 410–414 (1995).
D. L. Mitchell. Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. Journal of the Atmospheric Sciences 53, 1710–1723 (1996).
A. J. Heymsfield. Properties of Tropical and Midlatitude Ice Cloud Particle Ensembles. Part II: Applications for Mesoscale and Climate Models. Journal of the Atmospheric Sciences 60, 2592–2611 (2003).
H. Morrison and W. W. Grabowski. A Novel Approach for Representing Ice Microphysics in Models: Description and Tests Using a Kinematic Framework. Journal of the Atmospheric Sciences 65, 1528–1548 (2008).
N. Desai, K. Chandrakar, G. Kinney, W. Cantrell and R. Shaw. Aerosol-Mediated Glaciation of Mixed-Phase Clouds: Steady-State Laboratory Measurements. Geophysical Research Letters 46, 9154–9162 (2019).
H. Abdul-Razzak, S. J. Ghan and C. Rivera-Carpio. A parameterization of aerosol activation: 1. Single aerosol type. Journal of Geophysical Research: Atmospheres 103, 6123–6131 (1998).
H. Abdul-Razzak and S. J. Ghan. A parameterization of aerosol activation: 2. Multiple aerosol types. Journal of Geophysical Research: Atmospheres 105, 6837–6844 (2000).
M. D. Petters and S. M. Kreidenweis. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7, 1961–1971 (2007).
R. Rogers. An elementary parcel model with explicit condensation and supersaturation. Atmosphere 13, 192–204 (1975).
M. Baumgartner, C. Rolf, J.-U. Grooß, J. Schneider, T. Schorr, O. Möhler, P. Spichtinger and M. Krämer. New investigations on homogeneous ice nucleation: the effects of water activity and water saturation formulations. Atmospheric Chemistry and Physics 22, 65–91 (2022).
B. Luo, K. S. Carslaw, T. Peter and S. L. Clegg, vapour pressures of H2SO4/HNO3/HCl/HBr/H2O solutions to low stratospheric temperatures. Geophysical Research Letters 22, 247–250 (1995).
O. Möhler, P. R. Field, P. Connolly, S. Benz, H. Saathoff, M. Schnaiter, R. Wagner, R. Cotton, M. Krämer, A. Mangold and A. J. Heymsfield. Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmospheric Chemistry and Physics 6, 3007–3021 (2006).
S. China, P. A. Alpert, B. Zhang, S. Schum, K. Dzepina, K. Wright, R. C. Owen, P. Fialho, L. R. Mazzoleni, C. Mazzoleni and D. A. Knopf. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean. Journal of Geophysical Research: Atmospheres 122, 3065–3079 (2017).
P. A. Alpert, A. Boucly, S. Yang, H. Yang, K. Kilchhofer, Z. Luo, C. Padeste, S. Finizio, M. Ammann and B. Watts. Ice nucleation imaged with X-ray spectro-microscopy.  Environ. Sci.: Atmos. 2, 335–351 (2022).
G. Thompson, R. M. Rasmussen and K. Manning. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Monthly Weather Review 132, 519–542 (2004).
S. Karthika, T. K. Radhakrishnan and P. Kalaichelvi. A Review of Classical and Nonclassical Nucleation Theories. Crystal Growth & Design 16, 6663–6681 (2016).
E. Bigg. The supercooling of water. Proc. Phys. Soc. 66B, 688–694 (1953).
R. H. Barklie and N. R. Gokhale. The freezing of supercooled wter drops. Alberta hal, 1958, and related studies. McGill University Stormy Weather Group Sci. Rep. MW-30, 43–64 (1959).
E. Dunne and e. al. Global atmospheric particle formation from CERN CLOUD measurements. Science 354, 1119–1124 (2016).
J. Kirkby and e. al. Ion-induced nucleation of pure biogenic particles. Nature 533, 521–526 (2016).
F. Riccobono and e. al. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science 344, 717–721 (2014).
H. Vehkamäki, M. Kulmala, I. Napari, K. E. Lehtinen, C. Timmreck, M. Noppel and A. Laaksonen. An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. Journal of Geophysical Research: Atmospheres 107 (2002).
K. E. Lehtinen, M. . Maso, M. Kulmala and V.-M. Kerminen. Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation. Journal of Aerosol Science 38, 988–994 (2007).
F. Glassmeier and U. Lohmann. Constraining Precipitation Susceptibility of Warm-, Ice-, and Mixed-Phase Clouds with Microphysical Equations. Journal of the Atmospheric Sciences 73, 5003–5023 (2016).
A. V. Korolev and I. P. Mazin. Supersaturation of Water Vapor in Clouds. Journal of the Atmospheric Sciences 60, 2957–2974 (2003).
B. Kärcher, J. Hendricks and U. Lohmann. Physically based parameterization of cirrus cloud formation for use in global atmospheric models. Journal of Geophysical Research: Atmospheres 111 (2006).
C. Tully, D. Neubauer and U. Lohmann. Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations. Geoscientific Model Development 16, 2957–2973 (2023).
E. J. Jensen, G. S. Diskin, J. DiGangi, S. Woods, R. P. Lawson and T. V. Bui. Homogeneous Freezing Events Sampled in the Tropical Tropopause Layer. Journal of Geophysical Research: Atmospheres 127, e2022JD036535 (2022), e2022JD036535 2022JD036535.
P. A. Alpert and D. A. Knopf. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model. Atmos. Chem. Phys. 16, 2083–2107 (2016).