Particle Distributions

TODO

Functions

Cloudy.ParticleDistributions.momentFunction

moment(dist, q)

  • dist - distribution of which the partial moment q is taken
  • q - is a potentially real-valued order of the moment

Returns the q-th moment of a particle mass distribution function.

Cloudy.ParticleDistributions.get_momentsFunction
get_moments(pdist::GammaParticleDistribution{FT})

Returns the first P (0, 1, 2) moments of the distribution where P is the innate numer of prognostic moments

Cloudy.ParticleDistributions.densityFunction

density(dist, x)

  • dist - is a particle mass distribution
  • x - is a point to evaluate the density of dist at

Returns the particle mass density evaluated at point x.

Cloudy.ParticleDistributions.normed_densityFunction

normed_density(dist, x)

  • dist - is a particle mass distribution
  • x - is a point to evaluate the density of dist at

Returns the particle normalized mass density evaluated at point x.

Cloudy.ParticleDistributions.update_dist_from_moments!Function
update_dist_from_moments!(pdist::GammaPrimitiveParticleDistribution{FT}, moments::Array{FT})

Updates parameters of the gamma distribution given the first three moments

update_dist_from_moments!(pdist::LognormalPrimitiveParticleDistribution{FT}, moments::Array{FT})

Updates parameters of the lognormal distribution given the first three moments

update_dist_from_moments!(pdist::ExponentialPrimitiveParticleDistribution{FT}, moments::Array{FT})

Updates parameters of the exponential distribution given the first two moments

update_dist_from_moments!(pdist::MonodispersePrimitiveParticleDistribution{FT}, moments::Array{FT})

Updates parameters of the monodisperse distribution given the first two moments

Cloudy.ParticleDistributions.moment_source_helperFunction

momentsourcehelper(dist, p1, p2, x_threshold)

  • dist - AbstractParticleDistribution
  • p1 - power of particle mass
  • p2 - power of particle mass
  • x_threshold- particle mass threshold

Returns ∫0^xthreshold ∫0^(xthreshold-x') x^p1 x'^p2 f(x) f(x') dx dx' for computations of the source of moments of the distribution below the given threshold xthreshold. For MonodispersePrimitiveParticleDistribution The integral can be computed analytically: ∫0^xthreshold ∫0^(xthreshold-x') x^p1 x'^p2 f(x) f(x') dx dx = n^2 * θ^(p1+p2) if θ < xthreshold/2, and equals zero otherwise. For ExponentialPrimitiveParticleDistribution and GammaPrimitiveParticleDistribution the two-dimensional integral reduces to a one-dimensional integral over incomplete gamma functions.