DiffEqDevTools.TestSolution
— TypeTestSolution
Base.length
— Methodlength(simres::ConvergenceSimulation)
Returns the number of simultations in the Convergence Simulation
Base.length
— MethodBase.length(tab::ODERKTableau)
Defines the length of a Runge-Kutta method to be the number of stages.
DiffEqDevTools.appxtrue
— Methodappxtrue(sol::AbstractODESolution,sol2::AbstractODESolution)
Uses the interpolant from the higher order solution sol2 to approximate errors for sol. If sol2 has no interpolant, only the final error is calculated.
DiffEqDevTools.appxtrue
— Methodappxtrue(sol::AbstractODESolution,sol2::TestSolution)
Uses the interpolant from the higher order solution sol2 to approximate errors for sol. If sol2 has no interpolant, only the final error is calculated.
DiffEqDevTools.constructBaker10
— FunctionTom Baker, University of Teeside. Part of RK-Aid http://www.scm.tees.ac.uk/users/u0000251/research/researcht.htm http://www.scm.tees.ac.uk/users/u0000251/j.r.dormand/t.baker/rk10921m/rk10921m
DiffEqDevTools.constructBogakiShampine3
— FunctionconstructBogakiShampine3()
Constructs the tableau object for the Bogakai-Shampine Order 2/3 method.
DiffEqDevTools.constructBogakiShampine5
— FunctionAn Efficient Runge-Kutta (4,5) Pair by P.Bogacki and L.F.Shampine Computers and Mathematics with Applications, Vol. 32, No. 6, 1996, pages 15 to 28
DiffEqDevTools.constructButcher6
— FunctionButcher's First Order 6 method
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructButcher62
— FunctionButcher's Second Order 6 method
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructButcher63
— FunctionButcher's Third Order 6
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructCashKarp
— FunctionconstructCashKarp()
Constructs the tableau object for the Cash-Karp Order 4/5 method.
DiffEqDevTools.constructCassity5
— FunctionCassity's Order 5 method
DiffEqDevTools.constructChummund6
— FunctionChummund's First Order 6 method
A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)
DiffEqDevTools.constructChummund62
— FunctionChummund's Second Order 6 method
A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)
DiffEqDevTools.constructClassicVerner6
— FunctionEXPLICIT RUNGE-KUTTA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructClassicVerner7
— FunctionEXPLICIT RUNGE-KUTTA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructClassicVerner8
— FunctionEXPLICIT RUNGE-KUTTA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructCooperVerner8
— FunctionSome Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405
DiffEqDevTools.constructCooperVerner82
— FunctionSome Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405
DiffEqDevTools.constructCurtis10
— FunctionHigh-order Explicit Runge-Kutta Formulae, Their uses, and Limitations, A.R.Curtis, J. Inst. Maths Applics (1975) 16, 35-55.
DiffEqDevTools.constructCurtis8
— FunctionAn Eighth Order Runge-Kutta process with Eleven Function Evaluations per Step, by A. R. Curtis, Numerische Mathematik, Vol. 16, No. 3 (1970), pages 268 to 277
DiffEqDevTools.constructDormandLockyerMcCorriganPrince6
— FunctionDormandLockyerMcCorriganPrince Order 6 Global Error Estimation
Global Error estimation with Runge-Kutta triples, by J.R.Dormand, M.A.Lockyer, N.E.McCorrigan and P.J.Prince, Computers and Mathematics with Applications, 18 (1989) pages 835-846.
DiffEqDevTools.constructDormandPrince6
— FunctionDormand-Prince Order 5//6 method
P.J. Prince and J. R. Dormand, High order embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics . 7 (1981), pp. 67-75.
DiffEqDevTools.constructDormandPrince8
— FunctionconstructDormandPrice8()
Constructs the tableau object for the Dormand-Prince Order 6/8 method.
DiffEqDevTools.constructDormandPrince8_64bit
— FunctionconstructDormandPrice8_64bit()
Constructs the tableau object for the Dormand-Prince Order 6/8 method with the approximated coefficients from the paper. This works until below 64-bit precision.
DiffEqDevTools.constructEnrightVerner7
— FunctionThe Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.
DiffEqDevTools.constructEnrightVerner8
— FunctionThe Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.
DiffEqDevTools.constructEuler
— FunctionEuler's method.
DiffEqDevTools.constructFeagin10
— FunctionFeagin10 in Tableau form
DiffEqDevTools.constructFeagin12
— FunctionTableau form of Feagin12
DiffEqDevTools.constructFeagin14
— FunctionTableau form of Feagin14
DiffEqDevTools.constructGL2
— FunctionGauss-Legendre Order 2.
DiffEqDevTools.constructGL4
— FunctionGauss-Legendre Order 4.
DiffEqDevTools.constructGL6
— FunctionGauss-Legendre Order 6.
DiffEqDevTools.constructHairer10
— FunctionA Runge-Kutta Method of Order 10, E. Hairer, J. Inst. Maths Applics (1978) 21, 47-59.
DiffEqDevTools.constructHeun
— FunctionHeun's Order 2 method.
DiffEqDevTools.constructHuta6
— FunctionAnton Hutas First Order 6 method
Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).
DiffEqDevTools.constructHuta62
— FunctionAnton Hutas Second Order 6 method
Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).
DiffEqDevTools.constructImplicitEuler
— FunctionImplicit Euler Method
DiffEqDevTools.constructKutta3
— FunctionKutta's Order 3 method.
DiffEqDevTools.constructLawson5
— FunctionLawson's 5th order scheme
An Order Five Runge Kutta Process with Extended Region of Stability, J. Douglas Lawson, Siam Journal on Numerical Analysis, Vol. 3, No. 4, (Dec., 1966) pages 593-597
DiffEqDevTools.constructLawson6
— FunctionLawson's Order 6
An Order 6 Runge-Kutta Process with an Extended Region of Stability, by J. D. Lawson, Siam Journal on Numerical Analysis, Vol. 4, No. 4 (Dec. 1967) pages 620-625.
DiffEqDevTools.constructLobattoIIIA4
— FunctionLobattoIIIA Order 4 method
DiffEqDevTools.constructLobattoIIIB2
— FunctionLobattoIIIB Order 2 method
DiffEqDevTools.constructLobattoIIIB4
— FunctionLobattoIIIB Order 4 method
DiffEqDevTools.constructLobattoIIIC2
— FunctionLobattoIIIC Order 2 method
DiffEqDevTools.constructLobattoIIIC4
— FunctionLobattoIIIC Order 4 method
DiffEqDevTools.constructLobattoIIICStar2
— FunctionLobattoIIIC* Order 2 method
DiffEqDevTools.constructLobattoIIICStar4
— FunctionLobattoIIIC* Order 4 method
DiffEqDevTools.constructLobattoIIID2
— FunctionLobattoIIID Order 2 method
DiffEqDevTools.constructLobattoIIID4
— FunctionLobattoIIID Order 4 method
DiffEqDevTools.constructLutherKonen5
— FunctionLuther and Konen's First Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructLutherKonen52
— FunctionLuther and Konen's Second Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructLutherKonen53
— FunctionLuther and Konen's Third Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructMidpointRule
— FunctionOrder 2 Midpoint Method
DiffEqDevTools.constructMikkawyEisa
— FunctionMikkawy-Eisa Order 6
A general four-parameter non-FSAL embedded Runge–Kutta algorithm of orders 6 and 4 in seven stages, by M.E.A. El-Mikkawy and M.M.M. Eisa, Applied Mathematics and Computation, Vol. 143, No. 2, (2003) pages 259 to 267.
DiffEqDevTools.constructOno10
— FunctionOno10
DiffEqDevTools.constructOno12
— FunctionOn the 25 stage 12th order explicit Runge-Kutta method, by Hiroshi Ono. Transactions of the Japan Society for Industrial and applied Mathematics, Vol. 6, No. 3, (2006) pages 177 to 186
DiffEqDevTools.constructPapakostas6
— FunctionPapakostas's Order 6
On Phase-Fitted modified Runge-Kutta Pairs of order 6(5), by Ch. Tsitouras and I. Th. Famelis, International Conference of Numerical Analysis and Applied Mathematics, Crete, (2006)
DiffEqDevTools.constructPapakostasPapaGeorgiou5
— FunctionS.N. Papakostas and G. PapaGeorgiou higher error more stable
A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.
DiffEqDevTools.constructPapakostasPapaGeorgiou52
— FunctionS.N. Papakostas and G. PapaGeorgiou less stable lower error Strictly better than DP5
A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.
DiffEqDevTools.constructRK4
— FunctionClassic RK4 method.
DiffEqDevTools.constructRK438Rule
— FunctionClassic RK4 3/8's rule method.
DiffEqDevTools.constructRKF4
— FunctionRunge-Kutta-Fehberg Order 4/3
DiffEqDevTools.constructRKF5
— FunctionRunge-Kutta-Fehlberg Order 4/5 method.
DiffEqDevTools.constructRKF8
— FunctionconstructRKF8()
Constructs the tableau object for the Runge-Kutta-Fehlberg Order 7/8 method.
DiffEqDevTools.constructRadauIA3
— FunctionRadauIA Order 3 method
DiffEqDevTools.constructRadauIA5
— FunctionRadauIA Order 5 method
DiffEqDevTools.constructRadauIIA3
— FunctionRadauIIA Order 3 method
DiffEqDevTools.constructRadauIIA5
— FunctionRadauIIA Order 5 method
DiffEqDevTools.constructRalston
— FunctionRalston's Order 2 method.
DiffEqDevTools.constructRalston4
— FunctionRalston's Order 4 method with minimum truncation error.
DiffEqDevTools.constructRungeFirst5
— FunctionRunge's First Order 5 method
DiffEqDevTools.constructSSPRK104
— FunctionExplicit SSP method of order 4 using 10 stages.
DiffEqDevTools.constructSSPRK22
— FunctionExplicit SSP method of order 2 using 2 stages.
DiffEqDevTools.constructSSPRK33
— FunctionExplicit SSP method of order 3 using 3 stages.
DiffEqDevTools.constructSSPRK43
— FunctionExplicit SSP method of order 3 using 4 stages.
DiffEqDevTools.constructSharp9
— FunctionJournal of Applied Mathematics & Decision Sciences, 4(2), 183-192 (2000), "High order explicit Runge-Kutta pairs for ephemerides of the Solar System and the Moon".
DiffEqDevTools.constructSharpSmart5
— FunctionExplicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.
DiffEqDevTools.constructSharpSmart7
— FunctionExplicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.
DiffEqDevTools.constructSharpVerner6
— FunctionSharp-Verner Order 5/6 method
Completely Imbedded Runge-Kutta Pairs, by P. W. Sharp and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 31, No. 4. (Aug., 1994), pages. 1169 to 1190.
DiffEqDevTools.constructSharpVerner7
— FunctionCompletely Imbedded Runge-Kutta Pairs, by P.W.Sharp and J.H.Verner, Siam Journal on Numerical Analysis, Vol.31, No.4. (August 1994) pages 1169-1190.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6A
— FunctionTanakaKasugaYamashitaYazaki Order 6 A
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6B
— FunctionconstructTanakaKasugaYamashitaYazaki Order 6 B
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6C
— FunctionconstructTanakaKasugaYamashitaYazaki Order 6 C
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6D
— FunctionconstructTanakaKasugaYamashitaYazaki Order 6 D
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaYamashitaEfficient7
— FunctionOn the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.
DiffEqDevTools.constructTanakaYamashitaStable7
— FunctionOn the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.
DiffEqDevTools.constructTrapezoidalRule
— FunctionOrder 2 Trapezoidal Rule (LobattoIIIA2)
DiffEqDevTools.constructTsitouras5
— FunctionRunge–Kutta pairs of orders 5(4) using the minimal set of simplifying assumptions, by Ch. Tsitouras, TEI of Chalkis, Dept. of Applied Sciences, GR34400, Psahna, Greece.
DiffEqDevTools.constructTsitouras9
— FunctionOptimized explicit Runge-Kutta pairs of order 9(8), by Ch. Tsitouras, Applied Numerical Mathematics, 38 (2001) 123-134.
DiffEqDevTools.constructTsitouras92
— FunctionOptimized explicit Runge-Kutta pairs of order 9(8), by Ch. Tsitouras, Applied Numerical Mathematics, 38 (2001) 123-134.
DiffEqDevTools.constructTsitourasPapakostas6
— FunctionTsitouras-Papakostas's Order 6
Cheap Error Estimation for Runge-Kutta methods, by Ch. Tsitouras and S.N. Papakostas, Siam Journal on Scientific Computing, Vol. 20, Issue 6, Nov 1999.
DiffEqDevTools.constructTsitourasPapakostas8
— FunctionCheap Error Estimation for Runge-Kutta methods, by Ch. Tsitouras and S.N. Papakostas, Siam Journal on Scientific Computing, Vol. 20, Issue 6, Nov 1999.
DiffEqDevTools.constructVerner6
— FunctionVerner Order 5/6 method
A Contrast of a New RK56 pair with DP56, by Jim Verner, Department of Mathematics. Simon Fraser University, Burnaby, Canada, 2006.
DiffEqDevTools.constructVerner8
— FunctionVerner Efficient 8
DiffEqDevTools.constructVerner916
— FunctionVerner 1991 First Order 5/6 method
Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.
DiffEqDevTools.constructVerner9162
— FunctionVerner 1991 Second Order 5/6 method
Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.
DiffEqDevTools.constructVernerEfficient6
— FunctionFrom Verner's Website
DiffEqDevTools.constructVernerEfficient7
— FunctionFrom Verner's website
DiffEqDevTools.constructVernerEfficient9
— FunctionFrom Verner's Webiste
DiffEqDevTools.constructVernerRobust6
— FunctionFrom Verner's Website
DiffEqDevTools.constructVernerRobust7
— FunctionFrom Verner's website
DiffEqDevTools.constructVernerRobust9
— FunctionFrom Verner's Webiste
DiffEqDevTools.constructdverk78
— FunctionJim Verner's "Maple" (dverk78)
DiffEqDevTools.deduce_Butcher_tableau
— Functiondeduce_Butcher_tableau(erk, T=Float64)
Deduce and return the Butcher coefficients A, b, c
by solving some specific ordinary differential equations using the explicit Runge-Kutta method erk
. The type T
will be used for computations and is the eltype
of A
, b
, and c
.
DiffEqDevTools.stability_region
— Methodstability_region(z,tab::ODERKTableau)
Calculates the stability function from the tableau at z
. Stable if <1.
\[r(z) = 1 + z bᵀ(I - zA)⁻¹ e\]
where e denotes a vector of ones.
DiffEqDevTools.stability_region
— Methodstability_region(tab::ODERKTableau; initial_guess=-3.0)
Calculates the length of the stability region in the real axis.