Base.lengthMethod

length(simres::ConvergenceSimulation)

Returns the number of simultations in the Convergence Simulation

Base.lengthMethod

Base.length(tab::ODERKTableau)

Defines the length of a Runge-Kutta method to be the number of stages.

DiffEqDevTools.appxtrueMethod

appxtrue(sol::AbstractODESolution,sol2::AbstractODESolution)

Uses the interpolant from the higher order solution sol2 to approximate errors for sol. If sol2 has no interpolant, only the final error is calculated.

DiffEqDevTools.appxtrueMethod

appxtrue(sol::AbstractODESolution,sol2::TestSolution)

Uses the interpolant from the higher order solution sol2 to approximate errors for sol. If sol2 has no interpolant, only the final error is calculated.

DiffEqDevTools.constructBaker10Function

Tom Baker, University of Teeside. Part of RK-Aid http://www.scm.tees.ac.uk/users/u0000251/research/researcht.htm http://www.scm.tees.ac.uk/users/u0000251/j.r.dormand/t.baker/rk10921m/rk10921m

DiffEqDevTools.constructBogakiShampine5Function

An Efficient Runge-Kutta (4,5) Pair by P.Bogacki and L.F.Shampine Computers and Mathematics with Applications, Vol. 32, No. 6, 1996, pages 15 to 28

DiffEqDevTools.constructButcher6Function

Butcher's First Order 6 method

On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194

DiffEqDevTools.constructButcher62Function

Butcher's Second Order 6 method

On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194

DiffEqDevTools.constructButcher63Function

Butcher's Third Order 6

On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194

DiffEqDevTools.constructChummund6Function

Chummund's First Order 6 method

A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)

DiffEqDevTools.constructChummund62Function

Chummund's Second Order 6 method

A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)

DiffEqDevTools.constructCooperVerner8Function

Some Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405

DiffEqDevTools.constructCooperVerner82Function

Some Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405

DiffEqDevTools.constructCurtis10Function

High-order Explicit Runge-Kutta Formulae, Their uses, and Limitations, A.R.Curtis, J. Inst. Maths Applics (1975) 16, 35-55.

DiffEqDevTools.constructCurtis8Function

An Eighth Order Runge-Kutta process with Eleven Function Evaluations per Step, by A. R. Curtis, Numerische Mathematik, Vol. 16, No. 3 (1970), pages 268 to 277

DiffEqDevTools.constructDormandLockyerMcCorriganPrince6Function

DormandLockyerMcCorriganPrince Order 6 Global Error Estimation

Global Error estimation with Runge-Kutta triples, by J.R.Dormand, M.A.Lockyer, N.E.McCorrigan and P.J.Prince, Computers and Mathematics with Applications, 18 (1989) pages 835-846.

DiffEqDevTools.constructDormandPrince6Function

Dormand-Prince Order 5//6 method

P.J. Prince and J. R. Dormand, High order embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics . 7 (1981), pp. 67-75.

DiffEqDevTools.constructDormandPrince8_64bitFunction

constructDormandPrice8_64bit()

Constructs the tableau object for the Dormand-Prince Order 6/8 method with the approximated coefficients from the paper. This works until below 64-bit precision.

DiffEqDevTools.constructEnrightVerner7Function

The Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.

DiffEqDevTools.constructEnrightVerner8Function

The Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.

DiffEqDevTools.constructHuta6Function

Anton Hutas First Order 6 method

Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).

DiffEqDevTools.constructHuta62Function

Anton Hutas Second Order 6 method

Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).

DiffEqDevTools.constructLawson5Function

Lawson's 5th order scheme

An Order Five Runge Kutta Process with Extended Region of Stability, J. Douglas Lawson, Siam Journal on Numerical Analysis, Vol. 3, No. 4, (Dec., 1966) pages 593-597

DiffEqDevTools.constructLawson6Function

Lawson's Order 6

An Order 6 Runge-Kutta Process with an Extended Region of Stability, by J. D. Lawson, Siam Journal on Numerical Analysis, Vol. 4, No. 4 (Dec. 1967) pages 620-625.

DiffEqDevTools.constructLutherKonen5Function

Luther and Konen's First Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.

DiffEqDevTools.constructLutherKonen52Function

Luther and Konen's Second Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.

DiffEqDevTools.constructLutherKonen53Function

Luther and Konen's Third Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.

DiffEqDevTools.constructMikkawyEisaFunction

Mikkawy-Eisa Order 6

A general four-parameter non-FSAL embedded Runge–Kutta algorithm of orders 6 and 4 in seven stages, by M.E.A. El-Mikkawy and M.M.M. Eisa, Applied Mathematics and Computation, Vol. 143, No. 2, (2003) pages 259 to 267.

DiffEqDevTools.constructOno12Function

On the 25 stage 12th order explicit Runge-Kutta method, by Hiroshi Ono. Transactions of the Japan Society for Industrial and applied Mathematics, Vol. 6, No. 3, (2006) pages 177 to 186

DiffEqDevTools.constructPapakostas6Function

Papakostas's Order 6

On Phase-Fitted modified Runge-Kutta Pairs of order 6(5), by Ch. Tsitouras and I. Th. Famelis, International Conference of Numerical Analysis and Applied Mathematics, Crete, (2006)

DiffEqDevTools.constructPapakostasPapaGeorgiou5Function

S.N. Papakostas and G. PapaGeorgiou higher error more stable

A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.

DiffEqDevTools.constructPapakostasPapaGeorgiou52Function

S.N. Papakostas and G. PapaGeorgiou less stable lower error Strictly better than DP5

A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.

DiffEqDevTools.constructSharp9Function

Journal of Applied Mathematics & Decision Sciences, 4(2), 183-192 (2000), "High order explicit Runge-Kutta pairs for ephemerides of the Solar System and the Moon".

DiffEqDevTools.constructSharpSmart5Function

Explicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.

DiffEqDevTools.constructSharpSmart7Function

Explicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.

DiffEqDevTools.constructSharpVerner6Function

Sharp-Verner Order 5/6 method

Completely Imbedded Runge-Kutta Pairs, by P. W. Sharp and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 31, No. 4. (Aug., 1994), pages. 1169 to 1190.

DiffEqDevTools.constructSharpVerner7Function

Completely Imbedded Runge-Kutta Pairs, by P.W.Sharp and J.H.Verner, Siam Journal on Numerical Analysis, Vol.31, No.4. (August 1994) pages 1169-1190.

DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6AFunction

TanakaKasugaYamashitaYazaki Order 6 A

On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.

DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6BFunction

constructTanakaKasugaYamashitaYazaki Order 6 B

On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.

DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6CFunction

constructTanakaKasugaYamashitaYazaki Order 6 C

On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.

DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6DFunction

constructTanakaKasugaYamashitaYazaki Order 6 D

On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.

DiffEqDevTools.constructTanakaYamashitaEfficient7Function

On the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.

DiffEqDevTools.constructTanakaYamashitaStable7Function

On the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.

DiffEqDevTools.constructTsitouras5Function

Runge–Kutta pairs of orders 5(4) using the minimal set of simplifying assumptions, by Ch. Tsitouras, TEI of Chalkis, Dept. of Applied Sciences, GR34400, Psahna, Greece.

DiffEqDevTools.constructTsitourasPapakostas6Function

Tsitouras-Papakostas's Order 6

Cheap Error Estimation for Runge-Kutta methods, by Ch. Tsitouras and S.N. Papakostas, Siam Journal on Scientific Computing, Vol. 20, Issue 6, Nov 1999.

DiffEqDevTools.constructVerner6Function

Verner Order 5/6 method

A Contrast of a New RK56 pair with DP56, by Jim Verner, Department of Mathematics. Simon Fraser University, Burnaby, Canada, 2006.

DiffEqDevTools.constructVerner916Function

Verner 1991 First Order 5/6 method

Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.

DiffEqDevTools.constructVerner9162Function

Verner 1991 Second Order 5/6 method

Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.

DiffEqDevTools.deduce_Butcher_tableauFunction
deduce_Butcher_tableau(erk, T=Float64)

Deduce and return the Butcher coefficients A, b, c by solving some specific ordinary differential equations using the explicit Runge-Kutta method erk. The type T will be used for computations and is the eltype of A, b, and c.

DiffEqDevTools.stability_regionMethod

stability_region(z,tab::ODERKTableau)

Calculates the stability function from the tableau at z. Stable if <1.

\[r(z) = 1 + z bᵀ(I - zA)⁻¹ e\]

where e denotes a vector of ones.

DiffEqDevTools.stability_regionMethod

stability_region(tab::ODERKTableau; initial_guess=-3.0)

Calculates the length of the stability region in the real axis.