Simulated Paths

The concept of a path adds a layer of abstraction. On the one-hand side we have models and simulations. These objects are specified by the mathematical details of stochastic processes. On the other hand-side we have payoffs and products. These objects are specified by the business context.

A path is used to link business context and payoff evaluation to models and simulations.

Path Creation

DiffFusion.AbstractPathType
abstract type AbstractPath end

An AbstractPath specifies the interface for path implementations.

This aims at providing the flexibility to add other types of paths in the future.

DiffFusion.PathType
struct Path <: AbstractPath
    sim::Simulation
    ts_dict::Dict{String,<:Termstructure}
    state_alias_dict::Dict{String,Int}
    context::Context
    interpolation::PathInterpolation
end

A Path combines a model, simulated model states and term structures. The interface to market references is established by a valuation context.

Paths are used by payoffs to calculate simulated zero bonds, asset prices and further building blocks of financial instrument payoffs.

DiffFusion.pathFunction
path(
    sim::Simulation,
    ts_dict::Dict{String,<:Termstructure},
    cxt::Context,
    ip::PathInterpolation = NoPathInterpolation
    )

Create a Path object.

path(
    sim::Simulation,
    ts::Vector{Termstructure},
    cxt::Context,
    ip::PathInterpolation = NoPathInterpolation
    )

Create a Path object from a list of term structures.

DiffFusion.PathInterpolationType
@enum(
    PathInterpolation,
    NoPathInterpolation,
    LinearPathInterpolation,
)

PathInterpolation encodes how simulated states can be interpolates.

Path Functions

DiffFusion.numeraireFunction
numeraire(p::AbstractPath, t::ModelTime, curve_key::String)

Calculate the numeraire in the domestic currency.

We allow for curve-specific numeraire calculation e.g. to allow for trade-specific discounting in AMC valuation.

numeraire(p::Path, t::ModelTime, curve_key::String)

Calculate the numeraire in the domestic currency.

We allow for curve-specific numeraire calculation e.g. to allow for trade-specific discounting in AMC valuation.

DiffFusion.bank_accountFunction
bank_account(p::AbstractPath, t::ModelTime, key::String)

Calculate a continuous compounded bank account value.

bank_account(p::Path, t::ModelTime, key::String)

Calculate a continuous compounded bank account value.

DiffFusion.zero_bondFunction
zero_bond(p::AbstractPath, t::ModelTime, T::ModelTime, key::String)

Calculate a zero coupon bond price.

zero_bond(p::Path, t::ModelTime, T::ModelTime, key::String)

Calculate a zero coupon bond price.

DiffFusion.zero_bondsFunction
zero_bonds(
    yts::YieldTermstructure,
    m::GaussianHjmModel,
    t::ModelTime,
    T::AbstractVector,
    SX::ModelState,
    )

Zero bond price reconstruction.

Returns a vector of length p where p is the number of paths in SX.

zero_bond(p::AbstractPath, t::ModelTime, T::ModelTime, key::String)

Calculate a zero coupon bond prices.

zero_bonds(p::Path, t::ModelTime, T::AbstractVector, key::String)

Calculate zero coupon bond prices.

DiffFusion.compounding_factorFunction
compounding_factor(p::AbstractPath, t::ModelTime, T1::ModelTime, T2::ModelTime, key::String)

Calculate a compounding factor P(t,T1) / P(t,T2).

compounding_factor(p::Path, t::ModelTime, T1::ModelTime, T2::ModelTime, key::String)

Calculate a compounding factor P(t,T1) / P(t,T2).

DiffFusion.assetFunction
asset(p::AbstractPath, t::ModelTime, key::String)

Calculate asset price.

asset(p::Path, t::ModelTime, key::String)

Calculate asset price.

DiffFusion.forward_assetFunction
forward_asset(p::AbstractPath, t::ModelTime, T::ModelTime, key::String)

Calculate forward asset price as expectation in T-forward measure.

forward_asset(p::Path, t::ModelTime, T::ModelTime, key::String)

Calculate forward asset price as expectation in T-forward measure, conditional on time-t.

DiffFusion.fixingFunction
fixing(p::AbstractPath, t::ModelTime, key::String)

Return a fixing from a term structure.

This is used to handle fixings for indices etc.

fixing(p::Path, t::ModelTime, key::String)

Return a fixing from a term structure.

DiffFusion.asset_convexity_adjustmentFunction
asset_convexity_adjustment(
    p::AbstractPath,
    t::ModelTime,
    T0::ModelTime,
    T1::ModelTime,
    T2::ModelTime,
    key::String
    )

Return the convexity adjustment for a YoY asset payoff.

asset_convexity_adjustment(
    p::Path,
    t::ModelTime,
    T0::ModelTime,
    T1::ModelTime,
    T2::ModelTime,
    key::String
    )

Return the convexity adjustment for a YoY asset payoff.

DiffFusion.forward_indexFunction
forward_index(p::AbstractPath, t::ModelTime, T::ModelTime, key::String)

Expectation Et^T[ST] of a tradeable asset.

forward_index(p::Path, t::ModelTime, T::ModelTime, key::String)

Expectation Et^T[ST] of a tradeable asset.

DiffFusion.index_convexity_adjustmentFunction
index_convexity_adjustment(
    p::AbstractPath,
    t::ModelTime,
    T0::ModelTime,
    T1::ModelTime,
    T2::ModelTime,
    key::String
    )

Return the convexity adjustment for a YoY index payoff.

index_convexity_adjustment(
    p::Path,
    t::ModelTime,
    T0::ModelTime,
    T1::ModelTime,
    T2::ModelTime,
    key::String
    )

Return the convexity adjustment for a YoY index payoff.

DiffFusion.future_indexFunction
future_index(p::AbstractPath, t::ModelTime, T::ModelTime, key::String)

Expectation E_t^Q[F(T,T)] of a Future index/price.

future_index(p::Path, t::ModelTime, T::ModelTime, key::String)

Expectation E_t^Q[F(T,T)] of a Future index/price.

Auxiliary methods

Base.lengthFunction
length(p::AbstractPath)

Return the number of realisations represented by the AbstractPath object.

We assume that model functions applied to an AbstractPath return a vector of length(p) where p is the number realisations.

length(p::Path)

Derive the number of realisations from the linked simulation.

DiffFusion.state_variableFunction
state_variable(sim::Simulation, t::ModelTime, ip::PathInterpolation)

Derive a state variable for a given observation time.

DiffFusion.discountFunction
discount(
    t::ModelTime,
    ts_dict::Dict{String,Termstructure},
    first_alias::String,
    second_alias::Union{String,Nothing} = nothing,
    operation::Union{String,Nothing} = nothing,
    )

Derive the discount factor for one or two of curve alias and a curve operation.