Mutual Information and Conditional Information
DiscreteEntropy.mutual_information
— Function mutual_information(X::CountData, Y::CountData, XY::CountData, estimator::Type{T}) where {T<:AbstractEstimator}
mutual_information(joint::Matrix{I}, estimator::Type{T}) where {T<:AbstractEstimator, I<:Real}
\[I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p_{X,Y}(x,y)}{p_X(x) p_Y(y)}\right)\]
But we use the identity
\[I(X;Y) = H(X) + H(Y) - H(X,Y)\]
where $H(X,Y)$ is the entropy of the joint distribution
DiscreteEntropy.conditional_entropy
— Functionconditional_entropy(X::CountData, XY::CountData, estimator::Type{T}) where {T<:NonParameterisedEstimator}
conditional_entropy(joint::Matrix{R}, estimator::Type{NSB}; dim=1, guess=false, KJ=nothing, KX=nothing) where {R<:Real}
conditional_entropy(joint::Matrix{R}, estimator::Type{Bayes}, α; dim=1, KJ=nothing, KX=nothing) where {R<:Real}
Compute the conditional entropy of Y conditioned on X
\[H(Y \mid X) = - \sum_{x \in X, y \in Y} p(x, y) \ln \frac{p(x, y)}{p(x)}\]
Compute the estimated conditional entropy of Y given X, from counts of X, and (X,Y) and estimator estimator
\[\hat{H}(Y \mid X) = \hat{H}(X, Y) - \hat{H}(X)\]