DynamicPPL.AbstractTransformation
— Typeabstract type AbstractTransformation
Represents a transformation to be used in link!!
and invlink!!
, amongst others.
A concrete implementation of this should implement the following methods:
link!!
: transforms theAbstractVarInfo
to the unconstrained space.invlink!!
: transforms theAbstractVarInfo
to the constrained space.
And potentially:
maybe_invlink_before_eval!!
: hook to decide whether to transform before evaluating the model.
See also: link!!
, invlink!!
, maybe_invlink_before_eval!!
.
DynamicPPL.AbstractVarInfo
— TypeAbstractVarInfo
Abstract supertype for data structures that capture random variables when executing a probabilistic model and accumulate log densities such as the log likelihood or the log joint probability of the model.
See also: VarInfo
, SimpleVarInfo
.
DynamicPPL.DefaultContext
— Typestruct DefaultContext <: AbstractContext end
The DefaultContext
is used by default to compute log the joint probability of the data and parameters when running the model.
DynamicPPL.DynamicTransformation
— Typestruct DynamicTransformation <: DynamicPPL.AbstractTransformation
Transformation which transforms the variables on a per-need-basis in the execution of a given Model
.
This is in constrast to StaticTransformation
which transforms all variables before the execution of a given Model
.
See also: StaticTransformation
.
DynamicPPL.IsLeaf
— TypeIsLeaf
Specifies that the context is a leaf in the context-tree.
DynamicPPL.IsParent
— TypeIsParent
Specifies that the context is a parent in the context-tree.
DynamicPPL.Leaf
— TypeLeaf{T}
A container that represents the leaf of a nested structure, implementing iterate
to return itself.
This is particularly useful in conjunction with Iterators.flatten
to prevent flattening of nested structures.
DynamicPPL.LikelihoodContext
— Typestruct LikelihoodContext{Tvars} <: AbstractContext
vars::Tvars
end
The LikelihoodContext
enables the computation of the log likelihood of the parameters when running the model. vars
can be used to evaluate the log likelihood for specific values of the model's parameters. If vars
is nothing
, the parameter values inside the VarInfo
will be used by default.
DynamicPPL.LogDensityFunction
— TypeLogDensityFunction
A callable representing a log density function of a model
.
Fields
varinfo
: varinfo used for evaluationmodel
: model used for evaluationcontext
: context used for evaluation; ifnothing
,leafcontext(model.context)
will be used when applicable
Examples
julia> using Distributions
julia> using DynamicPPL: LogDensityFunction, contextualize
julia> @model function demo(x)
m ~ Normal()
x ~ Normal(m, 1)
end
demo (generic function with 2 methods)
julia> model = demo(1.0);
julia> f = LogDensityFunction(model);
julia> # It implements the interface of LogDensityProblems.jl.
using LogDensityProblems
julia> LogDensityProblems.logdensity(f, [0.0])
-2.3378770664093453
julia> LogDensityProblems.dimension(f)
1
julia> # By default it uses `VarInfo` under the hood, but this is not necessary.
f = LogDensityFunction(model, SimpleVarInfo(model));
julia> LogDensityProblems.logdensity(f, [0.0])
-2.3378770664093453
julia> # This also respects the context in `model`.
f_prior = LogDensityFunction(contextualize(model, DynamicPPL.PriorContext()), VarInfo(model));
julia> LogDensityProblems.logdensity(f_prior, [0.0]) == logpdf(Normal(), 0.0)
true
DynamicPPL.Metadata
— TypeThe Metadata
struct stores some metadata about the parameters of the model. This helps query certain information about a variable, such as its distribution, which samplers sample this variable, its value and whether this value is transformed to real space or not.
Let md
be an instance of Metadata
:
md.vns
is the vector of allVarName
instances.md.idcs
is the dictionary that maps eachVarName
instance to its index in
md.vns
, md.ranges
md.dists
, md.orders
and md.flags
.
md.vns[md.idcs[vn]] == vn
.md.dists[md.idcs[vn]]
is the distribution ofvn
.md.gids[md.idcs[vn]]
is the set of algorithms used to samplevn
. This is used in
the Gibbs sampling process.
md.orders[md.idcs[vn]]
is the number ofobserve
statements beforevn
is sampled.md.ranges[md.idcs[vn]]
is the index range ofvn
inmd.vals
.md.vals[md.ranges[md.idcs[vn]]]
is the vector of values of corresponding tovn
.md.flags
is a dictionary of true/false flags.md.flags[flag][md.idcs[vn]]
is the
value of flag
corresponding to vn
.
To make md::Metadata
type stable, all the md.vns
must have the same symbol and distribution type. However, one can have a Julia variable, say x
, that is a matrix or a hierarchical array sampled in partitions, e.g. x[1][:] ~ MvNormal(zeros(2), I); x[2][:] ~ MvNormal(ones(2), I)
, and is managed by a single md::Metadata
so long as all the distributions on the RHS of ~
are of the same type. Type unstable Metadata
will still work but will have inferior performance. When sampling, the first iteration uses a type unstable Metadata
for all the variables then a specialized Metadata
is used for each symbol along with a function barrier to make the rest of the sampling type stable.
DynamicPPL.Metadata
— MethodMetadata()
Construct an empty type unstable instance of Metadata
.
DynamicPPL.MiniBatchContext
— Typestruct MiniBatchContext{Tctx, T} <: AbstractContext
context::Tctx
loglike_scalar::T
end
The MiniBatchContext
enables the computation of log(prior) + s * log(likelihood of a batch)
when running the model, where s
is the loglike_scalar
field, typically equal to the number of data points / batch size
. This is useful in batch-based stochastic gradient descent algorithms to be optimizing log(prior) + log(likelihood of all the data points)
in the expectation.
DynamicPPL.Model
— Typestruct Model{F,argnames,defaultnames,missings,Targs,Tdefaults}
f::F
args::NamedTuple{argnames,Targs}
defaults::NamedTuple{defaultnames,Tdefaults}
end
A Model
struct with model evaluation function of type F
, arguments of names argnames
types Targs
, default arguments of names defaultnames
with types Tdefaults
, and missing arguments missings
.
Here argnames
, defaultargnames
, and missings
are tuples of symbols, e.g. (:a, :b)
.
An argument with a type of Missing
will be in missings
by default. However, in non-traditional use-cases missings
can be defined differently. All variables in missings
are treated as random variables rather than observations.
The default arguments are used internally when constructing instances of the same model with different arguments.
Examples
julia> Model(f, (x = 1.0, y = 2.0))
Model{typeof(f),(:x, :y),(),(),Tuple{Float64,Float64},Tuple{}}(f, (x = 1.0, y = 2.0), NamedTuple())
julia> Model(f, (x = 1.0, y = 2.0), (x = 42,))
Model{typeof(f),(:x, :y),(:x,),(),Tuple{Float64,Float64},Tuple{Int64}}(f, (x = 1.0, y = 2.0), (x = 42,))
julia> Model{(:y,)}(f, (x = 1.0, y = 2.0), (x = 42,)) # with special definition of missings
Model{typeof(f),(:x, :y),(:x,),(:y,),Tuple{Float64,Float64},Tuple{Int64}}(f, (x = 1.0, y = 2.0), (x = 42,))
DynamicPPL.Model
— Method(model::Model)([rng, varinfo, sampler, context])
Sample from the model
using the sampler
with random number generator rng
and the context
, and store the sample and log joint probability in varinfo
.
The method resets the log joint probability of varinfo
and increases the evaluation number of sampler
.
DynamicPPL.Model
— MethodModel{missings}(f, args::NamedTuple, defaults::NamedTuple)
Create a model with evaluation function f
and missing arguments overwritten by missings
.
DynamicPPL.Model
— MethodModel(f, args::NamedTuple[, defaults::NamedTuple = ()])
Create a model with evaluation function f
and missing arguments deduced from args
.
Default arguments defaults
are used internally when constructing instances of the same model with different arguments.
DynamicPPL.NamedDist
— TypeA named distribution that carries the name of the random variable with it.
DynamicPPL.NoTransformation
— Typestruct NoTransformation <: DynamicPPL.AbstractTransformation
Transformation which applies the identity function.
DynamicPPL.NodeTrait
— TypeNodeTrait(context)
NodeTrait(f, context)
Specifies the role of context
in the context-tree.
The officially supported traits are:
IsLeaf
:context
does not have any decendants.IsParent
:context
has a child context to which we often defer. Expects the following methods to be implemented:
DynamicPPL.PrefixContext
— TypePrefixContext{Prefix}(context)
Create a context that allows you to use the wrapped context
when running the model and adds the Prefix
to all parameters.
This context is useful in nested models to ensure that the names of the parameters are unique.
See also: @submodel
DynamicPPL.PriorContext
— Typestruct PriorContext{Tvars} <: AbstractContext
vars::Tvars
end
The PriorContext
enables the computation of the log prior of the parameters vars
when running the model.
DynamicPPL.SampleFromPrior
— TypeSampleFromPrior
Sampling algorithm that samples unobserved random variables from their prior distribution.
DynamicPPL.SampleFromUniform
— TypeSampleFromUniform
Sampling algorithm that samples unobserved random variables from a uniform distribution.
References
DynamicPPL.Sampler
— TypeSampler{T}
Generic sampler type for inference algorithms of type T
in DynamicPPL.
Sampler
should implement the AbstractMCMC interface, and in particular AbstractMCMC.step
. A default implementation of the initial sampling step is provided that supports resuming sampling from a previous state and setting initial parameter values. It requires to overload loadstate
and initialstep
for loading previous states and actually performing the initial sampling step, respectively. Additionally, sometimes one might want to implement initialsampler
that specifies how the initial parameter values are sampled if they are not provided. By default, values are sampled from the prior.
DynamicPPL.SamplingContext
— TypeSamplingContext(
[rng::Random.AbstractRNG=Random.default_rng()],
[sampler::AbstractSampler=SampleFromPrior()],
[context::AbstractContext=DefaultContext()],
)
Create a context that allows you to sample parameters with the sampler
when running the model. The context
determines how the returned log density is computed when running the model.
See also: DefaultContext
, LikelihoodContext
, PriorContext
DynamicPPL.SimpleVarInfo
— Typestruct SimpleVarInfo{NT, T, C<:DynamicPPL.AbstractTransformation} <: AbstractVarInfo
A simple wrapper of the parameters with a logp
field for accumulation of the logdensity.
Currently only implemented for NT<:NamedTuple
and NT<:AbstractDict
.
Fields
values
: underlying representation of the realization representedlogp
: holds the accumulated log-probabilitytransformation
: represents whether it assumes variables to be transformed
Notes
The major differences between this and TypedVarInfo
are:
SimpleVarInfo
does not require linearization.SimpleVarInfo
can use more efficient bijectors.SimpleVarInfo
is only type-stable ifNT<:NamedTuple
and either a) no indexing is used in tilde-statements, or b) the values have been specified with the correct shapes.
Examples
General usage
julia> using StableRNGs
julia> @model function demo()
m ~ Normal()
x = Vector{Float64}(undef, 2)
for i in eachindex(x)
x[i] ~ Normal()
end
return x
end
demo (generic function with 2 methods)
julia> m = demo();
julia> rng = StableRNG(42);
julia> ### Sampling ###
ctx = SamplingContext(rng, SampleFromPrior(), DefaultContext());
julia> # In the `NamedTuple` version we need to provide the place-holder values for
# the variables which are using "containers", e.g. `Array`.
# In this case, this means that we need to specify `x` but not `m`.
_, vi = DynamicPPL.evaluate!!(m, SimpleVarInfo((x = ones(2), )), ctx);
julia> # (✓) Vroom, vroom! FAST!!!
vi[@varname(x[1])]
0.4471218424633827
julia> # We can also access arbitrary varnames pointing to `x`, e.g.
vi[@varname(x)]
2-element Vector{Float64}:
0.4471218424633827
1.3736306979834252
julia> vi[@varname(x[1:2])]
2-element Vector{Float64}:
0.4471218424633827
1.3736306979834252
julia> # (×) If we don't provide the container...
_, vi = DynamicPPL.evaluate!!(m, SimpleVarInfo(), ctx); vi
ERROR: type NamedTuple has no field x
[...]
julia> # If one does not know the varnames, we can use a `OrderedDict` instead.
_, vi = DynamicPPL.evaluate!!(m, SimpleVarInfo{Float64}(OrderedDict()), ctx);
julia> # (✓) Sort of fast, but only possible at runtime.
vi[@varname(x[1])]
-1.019202452456547
julia> # In addtion, we can only access varnames as they appear in the model!
vi[@varname(x)]
ERROR: KeyError: key x not found
[...]
julia> vi[@varname(x[1:2])]
ERROR: KeyError: key x[1:2] not found
[...]
Technically, it's possible to use any implementation of AbstractDict
in place of OrderedDict
, but OrderedDict
ensures that certain operations, e.g. linearization/flattening of the values in the varinfo, are consistent between evaluations. Hence OrderedDict
is the preferred implementation of AbstractDict
to use here.
You can also sample in transformed space:
julia> @model demo_constrained() = x ~ Exponential()
demo_constrained (generic function with 2 methods)
julia> m = demo_constrained();
julia> _, vi = DynamicPPL.evaluate!!(m, SimpleVarInfo(), ctx);
julia> vi[@varname(x)] # (✓) 0 ≤ x < ∞
1.8632965762164932
julia> _, vi = DynamicPPL.evaluate!!(m, DynamicPPL.settrans!!(SimpleVarInfo(), true), ctx);
julia> vi[@varname(x)] # (✓) -∞ < x < ∞
-0.21080155351918753
julia> xs = [last(DynamicPPL.evaluate!!(m, DynamicPPL.settrans!!(SimpleVarInfo(), true), ctx))[@varname(x)] for i = 1:10];
julia> any(xs .< 0) # (✓) Positive probability mass on negative numbers!
true
julia> # And with `OrderedDict` of course!
_, vi = DynamicPPL.evaluate!!(m, DynamicPPL.settrans!!(SimpleVarInfo(OrderedDict()), true), ctx);
julia> vi[@varname(x)] # (✓) -∞ < x < ∞
0.6225185067787314
julia> xs = [last(DynamicPPL.evaluate!!(m, DynamicPPL.settrans!!(SimpleVarInfo(), true), ctx))[@varname(x)] for i = 1:10];
julia> any(xs .< 0) # (✓) Positive probability mass on negative numbers!
true
Evaluation in transformed space of course also works:
julia> vi = DynamicPPL.settrans!!(SimpleVarInfo((x = -1.0,)), true)
Transformed SimpleVarInfo((x = -1.0,), 0.0)
julia> # (✓) Positive probability mass on negative numbers!
getlogp(last(DynamicPPL.evaluate!!(m, vi, DynamicPPL.DefaultContext())))
-1.3678794411714423
julia> # While if we forget to indicate that it's transformed:
vi = DynamicPPL.settrans!!(SimpleVarInfo((x = -1.0,)), false)
SimpleVarInfo((x = -1.0,), 0.0)
julia> # (✓) No probability mass on negative numbers!
getlogp(last(DynamicPPL.evaluate!!(m, vi, DynamicPPL.DefaultContext())))
-Inf
Indexing
Using NamedTuple
as underlying storage.
julia> svi_nt = SimpleVarInfo((m = (a = [1.0], ), ));
julia> svi_nt[@varname(m)]
(a = [1.0],)
julia> svi_nt[@varname(m.a)]
1-element Vector{Float64}:
1.0
julia> svi_nt[@varname(m.a[1])]
1.0
julia> svi_nt[@varname(m.a[2])]
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
julia> svi_nt[@varname(m.b)]
ERROR: type NamedTuple has no field b
[...]
Using OrderedDict
as underlying storage.
julia> svi_dict = SimpleVarInfo(OrderedDict(@varname(m) => (a = [1.0], )));
julia> svi_dict[@varname(m)]
(a = [1.0],)
julia> svi_dict[@varname(m.a)]
1-element Vector{Float64}:
1.0
julia> svi_dict[@varname(m.a[1])]
1.0
julia> svi_dict[@varname(m.a[2])]
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
julia> svi_dict[@varname(m.b)]
ERROR: type NamedTuple has no field b
[...]
DynamicPPL.StaticTransformation
— Typestruct StaticTransformation{F} <: DynamicPPL.AbstractTransformation
Transformation which transforms all variables before the execution of a given Model
.
This is done through the maybe_invlink_before_eval!!
method.
See also: DynamicTransformation
, maybe_invlink_before_eval!!
.
Fields
bijector::Any
: The function, assumed to implement theBijectors
interface, to be applied to the variables
DynamicPPL.ThreadSafeVarInfo
— TypeThreadSafeVarInfo
A ThreadSafeVarInfo
object wraps an AbstractVarInfo
object and an array of log probabilities for thread-safe execution of a probabilistic model.
DynamicPPL.TypeWrap
— TypeTypeWrap{T}
A wrapper type used internally to make expressions such as ::Type{TV}
in the model arguments not ending up as a DataType
.
DynamicPPL.TypedVarInfo
— MethodTypedVarInfo(vi::UntypedVarInfo)
This function finds all the unique sym
s from the instances of VarName{sym}
found in vi.metadata.vns
. It then extracts the metadata associated with each symbol from the global vi.metadata
field. Finally, a new VarInfo
is created with a new metadata
as a NamedTuple
mapping from symbols to type-stable Metadata
instances, one for each symbol.
DynamicPPL.ValuesAsInModelContext
— TypeValuesAsInModelContext
A context that is used by values_as_in_model
to obtain values of the model parameters as they are in the model.
This is particularly useful when working in unconstrained space, but one wants to extract the realization of a model in a constrained space.
Fields
values::Any
: values that are extracted from the modelcontext::AbstractPPL.AbstractContext
: child context
DynamicPPL.VarInfo
— Typestruct VarInfo{Tmeta, Tlogp} <: AbstractVarInfo
metadata::Tmeta
logp::Base.RefValue{Tlogp}
num_produce::Base.RefValue{Int}
end
A light wrapper over one or more instances of Metadata
. Let vi
be an instance of VarInfo
. If vi isa VarInfo{<:Metadata}
, then only one Metadata
instance is used for all the sybmols. VarInfo{<:Metadata}
is aliased UntypedVarInfo
. If vi isa VarInfo{<:NamedTuple}
, then vi.metadata
is a NamedTuple
that maps each symbol used on the LHS of ~
in the model to its Metadata
instance. The latter allows for the type specialization of vi
after the first sampling iteration when all the symbols have been observed. VarInfo{<:NamedTuple}
is aliased TypedVarInfo
.
Note: It is the user's responsibility to ensure that each "symbol" is visited at least once whenever the model is called, regardless of any stochastic branching. Each symbol refers to a Julia variable and can be a hierarchical array of many random variables, e.g. x[1] ~ ...
and x[2] ~ ...
both have the same symbol x
.
AbstractPPL.condition
— Methodcondition(model::Model; values...)
condition(model::Model, values::NamedTuple)
Return a Model
which now treats the variables in values
as observations.
See also: decondition
, conditioned
Limitations
This does currently not work with variables that are provided to the model as arguments, e.g. @model function demo(x) ... end
means that condition
will not affect the variable x
.
Therefore if one wants to make use of condition
and decondition
one should not be specifying any random variables as arguments.
This is done for the sake of backwards compatibility.
Examples
Simple univariate model
julia> using Distributions
julia> @model function demo()
m ~ Normal()
x ~ Normal(m, 1)
return (; m=m, x=x)
end
demo (generic function with 2 methods)
julia> model = demo();
julia> m, x = model(); (m ≠ 1.0 && x ≠ 100.0)
true
julia> # Create a new instance which treats `x` as observed
# with value `100.0`, and similarly for `m=1.0`.
conditioned_model = condition(model, x=100.0, m=1.0);
julia> m, x = conditioned_model(); (m == 1.0 && x == 100.0)
true
julia> # Let's only condition on `x = 100.0`.
conditioned_model = condition(model, x = 100.0);
julia> m, x =conditioned_model(); (m ≠ 1.0 && x == 100.0)
true
julia> # We can also use the nicer `|` syntax.
conditioned_model = model | (x = 100.0, );
julia> m, x = conditioned_model(); (m ≠ 1.0 && x == 100.0)
true
The above uses a NamedTuple
to hold the conditioning variables, which allows us to perform some additional optimizations; in many cases, the above has zero runtime-overhead.
But we can also use a Dict
, which offers more flexibility in the conditioning (see examples further below) but generally has worse performance than the NamedTuple
approach:
julia> conditioned_model_dict = condition(model, Dict(@varname(x) => 100.0));
julia> m, x = conditioned_model_dict(); (m ≠ 1.0 && x == 100.0)
true
julia> # There's also an option using `|` by letting the right-hand side be a tuple
# with elements of type `Pair{<:VarName}`, i.e. `vn => value` with `vn isa VarName`.
conditioned_model_dict = model | (@varname(x) => 100.0, );
julia> m, x = conditioned_model_dict(); (m ≠ 1.0 && x == 100.0)
true
Condition only a part of a multivariate variable
Not only can be condition on multivariate random variables, but we can also use the standard mechanism of setting something to missing
in the call to condition
to only condition on a part of the variable.
julia> @model function demo_mv(::Type{TV}=Float64) where {TV}
m = Vector{TV}(undef, 2)
m[1] ~ Normal()
m[2] ~ Normal()
return m
end
demo_mv (generic function with 4 methods)
julia> model = demo_mv();
julia> conditioned_model = condition(model, m = [missing, 1.0]);
julia> # (✓) `m[1]` sampled while `m[2]` is fixed
m = conditioned_model(); (m[1] ≠ 1.0 && m[2] == 1.0)
true
Intuitively one might also expect to be able to write model | (m[1] = 1.0, )
. Unfortunately this is not supported as it has the potential of increasing compilation times but without offering any benefit with respect to runtime:
julia> # (×) `m[2]` is not set to 1.0.
m = condition(model, var"m[2]" = 1.0)(); m[2] == 1.0
false
But you can do this if you use a Dict
as the underlying storage instead:
julia> # Alternatives:
# - `model | (@varname(m[2]) => 1.0,)`
# - `condition(model, Dict(@varname(m[2] => 1.0)))`
# (✓) `m[2]` is set to 1.0.
m = condition(model, @varname(m[2]) => 1.0)(); (m[1] ≠ 1.0 && m[2] == 1.0)
true
Nested models
condition
of course also supports the use of nested models through the use of @submodel
.
julia> @model demo_inner() = m ~ Normal()
demo_inner (generic function with 2 methods)
julia> @model function demo_outer()
@submodel m = demo_inner()
return m
end
demo_outer (generic function with 2 methods)
julia> model = demo_outer();
julia> model() ≠ 1.0
true
julia> conditioned_model = model | (m = 1.0, );
julia> conditioned_model()
1.0
But one needs to be careful when prefixing variables in the nested models:
julia> @model function demo_outer_prefix()
@submodel prefix="inner" m = demo_inner()
return m
end
demo_outer_prefix (generic function with 2 methods)
julia> # (×) This doesn't work now!
conditioned_model = demo_outer_prefix() | (m = 1.0, );
julia> conditioned_model() == 1.0
false
julia> # (✓) `m` in `demo_inner` is referred to as `inner.m` internally, so we do:
conditioned_model = demo_outer_prefix() | (var"inner.m" = 1.0, );
julia> conditioned_model()
1.0
julia> # Note that the above `var"..."` is just standard Julia syntax:
keys((var"inner.m" = 1.0, ))
(Symbol("inner.m"),)
And similarly when using Dict
:
julia> conditioned_model_dict = demo_outer_prefix() | (@varname(var"inner.m") => 1.0);
julia> conditioned_model_dict()
1.0
The difference is maybe more obvious once we look at how these different in their trace/VarInfo
:
julia> keys(VarInfo(demo_outer()))
1-element Vector{VarName{:m, typeof(identity)}}:
m
julia> keys(VarInfo(demo_outer_prefix()))
1-element Vector{VarName{Symbol("inner.m"), typeof(identity)}}:
inner.m
From this we can tell what the correct way to condition m
within demo_inner
is in the two different models.
AbstractPPL.condition
— Methodcondition([context::AbstractContext,] values::NamedTuple)
condition([context::AbstractContext]; values...)
Return ConditionContext
with values
and context
if values
is non-empty, otherwise return context
which is DefaultContext
by default.
See also: decondition
AbstractPPL.decondition
— Methoddecondition(context::AbstractContext, syms...)
Return context
but with syms
no longer conditioned on.
Note that this recursively traverses contexts, deconditioning all along the way.
See also: condition
AbstractPPL.decondition
— Methoddecondition(model::Model)
decondition(model::Model, variables...)
Return a Model
for which variables...
are not considered observations. If no variables
are provided, then all variables currently considered observations will no longer be.
This is essentially the inverse of condition
. This also means that it suffers from the same limitiations.
Note that currently we only support variables
to take on explicit values provided to condition
.
Examples
julia> using Distributions
julia> @model function demo()
m ~ Normal()
x ~ Normal(m, 1)
return (; m=m, x=x)
end
demo (generic function with 2 methods)
julia> conditioned_model = condition(demo(), m = 1.0, x = 10.0);
julia> conditioned_model()
(m = 1.0, x = 10.0)
julia> # By specifying the `VarName` to `decondition`.
model = decondition(conditioned_model, @varname(m));
julia> (m, x) = model(); (m ≠ 1.0 && x == 10.0)
true
julia> # When `NamedTuple` is used as the underlying, you can also provide
# the symbol directly (though the `@varname` approach is preferable if
# if the variable is known at compile-time).
model = decondition(conditioned_model, :m);
julia> (m, x) = model(); (m ≠ 1.0 && x == 10.0)
true
julia> # `decondition` multiple at once:
(m, x) = decondition(model, :m, :x)(); (m ≠ 1.0 && x ≠ 10.0)
true
julia> # `decondition` without any symbols will `decondition` all variables.
(m, x) = decondition(model)(); (m ≠ 1.0 && x ≠ 10.0)
true
julia> # Usage of `Val` to perform `decondition` at compile-time if possible
# is also supported.
model = decondition(conditioned_model, Val{:m}());
julia> (m, x) = model(); (m ≠ 1.0 && x == 10.0)
true
Similarly when using a Dict
:
julia> conditioned_model_dict = condition(demo(), @varname(m) => 1.0, @varname(x) => 10.0);
julia> conditioned_model_dict()
(m = 1.0, x = 10.0)
julia> deconditioned_model_dict = decondition(conditioned_model_dict, @varname(m));
julia> (m, x) = deconditioned_model_dict(); m ≠ 1.0 && x == 10.0
true
But, as mentioned, decondition
is only supported for variables explicitly provided to condition
earlier;
julia> @model function demo_mv(::Type{TV}=Float64) where {TV}
m = Vector{TV}(undef, 2)
m[1] ~ Normal()
m[2] ~ Normal()
return m
end
demo_mv (generic function with 4 methods)
julia> model = demo_mv();
julia> conditioned_model = condition(model, @varname(m) => [1.0, 2.0]);
julia> conditioned_model()
2-element Vector{Float64}:
1.0
2.0
julia> deconditioned_model = decondition(conditioned_model, @varname(m[1]));
julia> deconditioned_model() # (×) `m[1]` is still conditioned
2-element Vector{Float64}:
1.0
2.0
julia> # (✓) this works though
deconditioned_model_2 = deconditioned_model | (@varname(m[1]) => missing);
julia> m = deconditioned_model_2(); (m[1] ≠ 1.0 && m[2] == 2.0)
true
AbstractPPL.evaluate!!
— Methodevaluate!!(model::Model[, rng, varinfo, sampler, context])
Sample from the model
using the sampler
with random number generator rng
and the context
, and store the sample and log joint probability in varinfo
.
Returns both the return-value of the original model, and the resulting varinfo.
The method resets the log joint probability of varinfo
and increases the evaluation number of sampler
.
BangBang.empty!!
— Functionempty!!(vi::AbstractVarInfo)
Empty the fields of vi.metadata
and reset vi.logp[]
and vi.num_produce[]
to zeros.
This is useful when using a sampling algorithm that assumes an empty vi
, e.g. SMC
.
BangBang.push!!
— Methodpush!!(vi::AbstractVarInfo, vn::VarName, r, dist::Distribution, gid::Selector)
Push a new random variable vn
with a sampled value r
sampled with a sampler of selector gid
from a distribution dist
to VarInfo
vi
.
This method is considered legacy, and is likely to be deprecated in the future.
BangBang.push!!
— Methodpush!!(vi::AbstractVarInfo, vn::VarName, r, dist::Distribution, spl::AbstractSampler)
Push a new random variable vn
with a sampled value r
sampled with a sampler spl
from a distribution dist
to VarInfo
vi
, if it makes sense.
The sampler is passed here to invalidate its cache where defined.
This method is considered legacy, and is likely to be deprecated in the future.
BangBang.push!!
— Methodpush!!(vi::AbstractVarInfo, vn::VarName, r, dist::Distribution)
Push a new random variable vn
with a sampled value r
from a distribution dist
to the VarInfo
vi
, mutating if it makes sense.
Base.:|
— Methodmodel | (x = 1.0, ...)
Return a Model
which now treats variables on the right-hand side as observations.
See condition
for more information and examples.
Base.eltype
— Methodeltype(vi::AbstractVarInfo, spl::Union{AbstractSampler,SampleFromPrior}
Determine the default eltype
of the values returned by vi[spl]
.
This should generally not be called explicitly, as it's only used in matchingvalue
to determine the default type to use in place of type-parameters passed to the model.
This method is considered legacy, and is likely to be deprecated in the future.
Base.empty!
— Methodempty!(meta::Metadata)
Empty the fields of meta
.
This is useful when using a sampling algorithm that assumes an empty meta
, e.g. SMC
.
Base.getindex
— Functiongetindex(vi::AbstractVarInfo, vn::VarName[, dist::Distribution])
getindex(vi::AbstractVarInfo, vns::Vector{<:VarName}[, dist::Distribution])
Return the current value(s) of vn
(vns
) in vi
in the support of its (their) distribution(s).
If dist
is specified, the value(s) will be reshaped accordingly.
See also: getindex_raw(vi::AbstractVarInfo, vn::VarName, dist::Distribution)
Base.getindex
— Methodgetindex(vi::AbstractVarInfo, ::Colon)
getindex(vi::AbstractVarInfo, ::AbstractSampler)
Return the current value(s) of vn
(vns
) in vi
in the support of its (their) distribution(s) as a flattened Vector
.
The default implementation is to call values_as
with Vector
as the type-argument.
See also: getindex(vi::AbstractVarInfo, vn::VarName, dist::Distribution)
Base.getindex
— Methodgetindex(vi::VarInfo, spl::Union{SampleFromPrior, Sampler})
Return the current value(s) of the random variables sampled by spl
in vi
.
The value(s) may or may not be transformed to Euclidean space.
Base.haskey
— Methodhaskey(vi::VarInfo, vn::VarName)
Check whether vn
has been sampled in vi
.
Base.isempty
— Functionisempty(vi::AbstractVarInfo)
Return true if vi
is empty and false otherwise.
Base.keys
— Functionkeys(vi::AbstractVarInfo)
Return an iterator over all vns
in vi
.
Base.keys
— Methodkeys(vi::SimpleVarInfo)
Return an iterator of keys present in vi
.
Base.merge
— Methodmerge(varinfo, other_varinfos...)
Merge varinfos into one, giving precedence to the right-most varinfo when sensible.
This is particularly useful when combined with subset(varinfo, vns)
.
See docstring of subset(varinfo, vns)
for examples.
Base.nameof
— Methodnameof(model::Model)
Get the name of the model
as Symbol
.
Base.rand
— Methodrand([rng=Random.default_rng()], [T=NamedTuple], model::Model)
Generate a sample of type T
from the prior distribution of the model
.
Base.setindex!
— Methodsetindex!(vi::VarInfo, val, spl::Union{SampleFromPrior, Sampler})
Set the current value(s) of the random variables sampled by spl
in vi
to val
.
The value(s) may or may not be transformed to Euclidean space.
Base.setindex!
— Methodsetindex!(vi::VarInfo, val, vn::VarName)
Set the current value(s) of the random variable vn
in vi
to val
.
The value(s) may or may not be transformed to Euclidean space.
Bijectors.invlink
— Methodinvlink([t::AbstractTransformation, ]vi::AbstractVarInfo, model::Model)
invlink([t::AbstractTransformation, ]vi::AbstractVarInfo, spl::AbstractSampler, model::Model)
Transform the variables in vi
to their constrained space without mutating vi
, using the (inverse of) transformation t
.
If t
is not provided, default_transformation(model, vi)
will be used.
See also: default_transformation
, link
.
Bijectors.link
— Methodlink([t::AbstractTransformation, ]vi::AbstractVarInfo, model::Model)
link([t::AbstractTransformation, ]vi::AbstractVarInfo, spl::AbstractSampler, model::Model)
Transform the variables in vi
to their linked space without mutating vi
, using the transformation t
.
If t
is not provided, default_transformation(model, vi)
will be used.
See also: default_transformation
, invlink
.
DynamicPPL._apply!
— Method_apply!(kernel!, vi::VarInfo, values, keys)
Calls kernel!(vi, vn, values, keys)
for every vn
in vi
.
DynamicPPL._evaluate!!
— Method_evaluate!!(model::Model, varinfo, context)
Evaluate the model
with the arguments matching the given context
and varinfo
object.
DynamicPPL.acclogp!!
— Methodacclogp!!([context::AbstractContext, ]vi::AbstractVarInfo, logp)
Add logp
to the value of the log of the joint probability of the observed data and parameters sampled in vi
, mutating if it makes sense.
DynamicPPL.addargnames!
— Methodaddargnames!(args)
Adds names to unnamed arguments in args
.
The names are generated with gensym(:arg)
to avoid conflicts with other variable names.
Examples
julia> args = :(f(x::Int, y, ::Type{T}=Float64)).args[2:end]
3-element Vector{Any}:
:(x::Int)
:y
:($(Expr(:kw, :(::Type{T}), :Float64)))
julia> DynamicPPL.addargnames!(args)
julia> args
3-element Vector{Any}:
:(x::Int)
:y
:($(Expr(:kw, :(var"##arg#301"::Type{T}), :Float64)))
DynamicPPL.build_model_definition
— Methodbuild_model_definition(input_expr)
Builds the modeldef
dictionary from the model's expression, where modeldef
is a dictionary compatible with MacroTools.combinedef
.
DynamicPPL.build_output
— Methodbuild_output(modeldef, linenumbernode)
Builds the output expression.
DynamicPPL.canview
— Methodcanview(optic, container)
Return true
if optic
can be used to view container
, and false
otherwise.
Examples
julia> canview(@o(_.a), (a = 1.0, ))
true
julia> canview(@o(_.a), (b = 1.0, )) # property `a` does not exist
false
julia> canview(@o(_.a[1]), (a = [1.0, 2.0], ))
true
julia> canview(@o(_.a[3]), (a = [1.0, 2.0], )) # out of bounds
false
DynamicPPL.check_tilde_rhs
— Methodcheck_tilde_rhs(x)
Check if the right-hand side x
of a ~
is a Distribution
or an array of Distributions
, then return x
.
DynamicPPL.childcontext
— Functionchildcontext(context)
Return the descendant context of context
.
DynamicPPL.conditioned
— Methodconditioned(context::AbstractContext)
Return NamedTuple
of values that are conditioned on under context`.
Note that this will recursively traverse the context stack and return a merged version of the condition values.
DynamicPPL.conditioned
— Methodconditioned(model::Model)
Return the conditioned values in model
.
Examples
julia> using Distributions
julia> using DynamicPPL: conditioned, contextualize
julia> @model function demo()
m ~ Normal()
x ~ Normal(m, 1)
end
demo (generic function with 2 methods)
julia> m = demo();
julia> # Returns all the variables we have conditioned on + their values.
conditioned(condition(m, x=100.0, m=1.0))
(x = 100.0, m = 1.0)
julia> # Nested ones also work (note that `PrefixContext` does nothing to the result).
cm = condition(contextualize(m, PrefixContext{:a}(condition(m=1.0))), x=100.0);
julia> conditioned(cm)
(x = 100.0, m = 1.0)
julia> # Since we conditioned on `m`, not `a.m` as it will appear after prefixed,
# `a.m` is treated as a random variable.
keys(VarInfo(cm))
1-element Vector{VarName{Symbol("a.m"), typeof(identity)}}:
a.m
julia> # If we instead condition on `a.m`, `m` in the model will be considered an observation.
cm = condition(contextualize(m, PrefixContext{:a}(condition(var"a.m"=1.0))), x=100.0);
julia> conditioned(cm).x
100.0
julia> conditioned(cm).var"a.m"
1.0
julia> keys(VarInfo(cm)) # <= no variables are sampled
VarName[]
DynamicPPL.contextual_isassumption
— Methodcontextual_isassumption(context, vn)
Return true
if vn
is considered an assumption by context
.
The default implementation for AbstractContext
always returns true
.
DynamicPPL.contextual_isfixed
— Methodcontextual_isfixed(context, vn)
Return true
if vn
is considered fixed by context
.
DynamicPPL.default_chain_type
— Methoddefault_chaintype(sampler)
Default type of the chain of posterior samples from sampler
.
DynamicPPL.default_transformation
— Methoddefault_transformation(model::Model[, vi::AbstractVarInfo])
Return the AbstractTransformation
currently related to model
and, potentially, vi
.
DynamicPPL.dot_tilde_assume!!
— Methoddot_tilde_assume!!(context, right, left, vn, vi)
Handle broadcasted assumed variables, e.g., x .~ MvNormal()
(where x
does not occur in the model inputs), accumulate the log probability, and return the sampled value and updated vi
.
Falls back to dot_tilde_assume(context, right, left, vn, vi)
.
DynamicPPL.dot_tilde_assume
— Methoddot_tilde_assume(context::SamplingContext, right, left, vn, vi)
Handle broadcasted assumed variables, e.g., x .~ MvNormal()
(where x
does not occur in the model inputs), accumulate the log probability, and return the sampled value for a context associated with a sampler.
Falls back to
dot_tilde_assume(context.rng, context.context, context.sampler, right, left, vn, vi)
DynamicPPL.dot_tilde_observe!!
— Methoddot_tilde_observe!!(context, right, left, vi)
Handle broadcasted observed constants, e.g., [1.0] .~ MvNormal()
, accumulate the log probability, and return the observed value and updated vi
.
Falls back to dot_tilde_observe(context, right, left, vi)
.
DynamicPPL.dot_tilde_observe!!
— Methoddot_tilde_observe!!(context, right, left, vname, vi)
Handle broadcasted observed values, e.g., x .~ MvNormal()
(where x
does occur in the model inputs), accumulate the log probability, and return the observed value and updated vi
.
Falls back to dot_tilde_observe!!(context, right, left, vi)
ignoring the information about variable name and indices; if needed, these can be accessed through this function, though.
DynamicPPL.dot_tilde_observe
— Methoddot_tilde_observe(context::SamplingContext, right, left, vi)
Handle broadcasted observed constants, e.g., [1.0] .~ MvNormal()
, accumulate the log probability, and return the observed value for a context associated with a sampler.
Falls back to dot_tilde_observe(context.context, context.sampler, right, left, vi)
.
DynamicPPL.evaluate_threadsafe!!
— Methodevaluate_threadsafe!!(model, varinfo, context)
Evaluate the model
with varinfo
wrapped inside a ThreadSafeVarInfo
.
With the wrapper, Julia's multithreading can be used for observe statements in the model
but parallel sampling will lead to undefined behaviour. This method is not exposed and supposed to be used only internally in DynamicPPL.
See also: evaluate_threadunsafe!!
DynamicPPL.evaluate_threadunsafe!!
— Methodevaluate_threadunsafe!!(model, varinfo, context)
Evaluate the model
without wrapping varinfo
inside a ThreadSafeVarInfo
.
If the model
makes use of Julia's multithreading this will lead to undefined behaviour. This method is not exposed and supposed to be used only internally in DynamicPPL.
See also: evaluate_threadsafe!!
DynamicPPL.extract_priors
— Methodextract_priors([rng::Random.AbstractRNG, ]model::Model)
Extract the priors from a model.
This is done by sampling from the model and recording the distributions that are used to generate the samples.
Because the extraction is done by execution of the model, there are several caveats:
- If one variable, say,
y ~ Normal(0, x)
, wherex ~ Normal()
is also a random variable, then the extracted prior will have different parameters in every extraction! - If the model does not have static support, say,
n ~ Categorical(1:10); x ~ MvNormmal(zeros(n), I)
, then the extracted priors themselves will be different between extractions, not just their parameters.
Both of these caveats are demonstrated below.
Examples
Changing parameters
julia> using Distributions, StableRNGs
julia> rng = StableRNG(42);
julia> @model function model_dynamic_parameters()
x ~ Normal(0, 1)
y ~ Normal(x, 1)
end;
julia> model = model_dynamic_parameters();
julia> extract_priors(rng, model)[@varname(y)]
Normal{Float64}(μ=-0.6702516921145671, σ=1.0)
julia> extract_priors(rng, model)[@varname(y)]
Normal{Float64}(μ=1.3736306979834252, σ=1.0)
Changing support
julia> using LinearAlgebra, Distributions, StableRNGs
julia> rng = StableRNG(42);
julia> @model function model_dynamic_support()
n ~ Categorical(ones(10) ./ 10)
x ~ MvNormal(zeros(n), I)
end;
julia> model = model_dynamic_support();
julia> length(extract_priors(rng, model)[@varname(x)])
6
julia> length(extract_priors(rng, model)[@varname(x)])
9
DynamicPPL.fix
— Methodfix(model::Model; values...)
fix(model::Model, values::NamedTuple)
Return a Model
which now treats the variables in values
as fixed.
Examples
Simple univariate model
julia> using Distributions
julia> @model function demo()
m ~ Normal()
x ~ Normal(m, 1)
return (; m=m, x=x)
end
demo (generic function with 2 methods)
julia> model = demo();
julia> m, x = model(); (m ≠ 1.0 && x ≠ 100.0)
true
julia> # Create a new instance which treats `x` as observed
# with value `100.0`, and similarly for `m=1.0`.
fixed_model = fix(model, x=100.0, m=1.0);
julia> m, x = fixed_model(); (m == 1.0 && x == 100.0)
true
julia> # Let's only fix on `x = 100.0`.
fixed_model = fix(model, x = 100.0);
julia> m, x = fixed_model(); (m ≠ 1.0 && x == 100.0)
true
The above uses a NamedTuple
to hold the fixed variables, which allows us to perform some additional optimizations; in many cases, the above has zero runtime-overhead.
But we can also use a Dict
, which offers more flexibility in the fixing (see examples further below) but generally has worse performance than the NamedTuple
approach:
julia> fixed_model_dict = fix(model, Dict(@varname(x) => 100.0));
julia> m, x = fixed_model_dict(); (m ≠ 1.0 && x == 100.0)
true
julia> # Alternative: pass `Pair{<:VarName}` as positional argument.
fixed_model_dict = fix(model, @varname(x) => 100.0, );
julia> m, x = fixed_model_dict(); (m ≠ 1.0 && x == 100.0)
true
Fix only a part of a multivariate variable
We can not only fix multivariate random variables, but we can also use the standard mechanism of setting something to missing
in the call to fix
to only fix a part of the variable.
julia> @model function demo_mv(::Type{TV}=Float64) where {TV}
m = Vector{TV}(undef, 2)
m[1] ~ Normal()
m[2] ~ Normal()
return m
end
demo_mv (generic function with 4 methods)
julia> model = demo_mv();
julia> fixed_model = fix(model, m = [missing, 1.0]);
julia> # (✓) `m[1]` sampled while `m[2]` is fixed
m = fixed_model(); (m[1] ≠ 1.0 && m[2] == 1.0)
true
Intuitively one might also expect to be able to write something like fix(model, var"m[1]" = 1.0, )
. Unfortunately this is not supported as it has the potential of increasing compilation times but without offering any benefit with respect to runtime:
julia> # (×) `m[2]` is not set to 1.0.
m = fix(model, var"m[2]" = 1.0)(); m[2] == 1.0
false
But you can do this if you use a Dict
as the underlying storage instead:
julia> # Alternative: `fix(model, Dict(@varname(m[2] => 1.0)))`
# (✓) `m[2]` is set to 1.0.
m = fix(model, @varname(m[2]) => 1.0)(); (m[1] ≠ 1.0 && m[2] == 1.0)
true
Nested models
fix
of course also supports the use of nested models through the use of @submodel
.
julia> @model demo_inner() = m ~ Normal()
demo_inner (generic function with 2 methods)
julia> @model function demo_outer()
@submodel m = demo_inner()
return m
end
demo_outer (generic function with 2 methods)
julia> model = demo_outer();
julia> model() ≠ 1.0
true
julia> fixed_model = model | (m = 1.0, );
julia> fixed_model()
1.0
But one needs to be careful when prefixing variables in the nested models:
julia> @model function demo_outer_prefix()
@submodel prefix="inner" m = demo_inner()
return m
end
demo_outer_prefix (generic function with 2 methods)
julia> # (×) This doesn't work now!
fixed_model = demo_outer_prefix() | (m = 1.0, );
julia> fixed_model() == 1.0
false
julia> # (✓) `m` in `demo_inner` is referred to as `inner.m` internally, so we do:
fixed_model = demo_outer_prefix() | (var"inner.m" = 1.0, );
julia> fixed_model()
1.0
julia> # Note that the above `var"..."` is just standard Julia syntax:
keys((var"inner.m" = 1.0, ))
(Symbol("inner.m"),)
And similarly when using Dict
:
julia> fixed_model_dict = demo_outer_prefix() | (@varname(var"inner.m") => 1.0);
julia> fixed_model_dict()
1.0
The difference is maybe more obvious once we look at how these different in their trace/VarInfo
:
julia> keys(VarInfo(demo_outer()))
1-element Vector{VarName{:m, typeof(identity)}}:
m
julia> keys(VarInfo(demo_outer_prefix()))
1-element Vector{VarName{Symbol("inner.m"), typeof(identity)}}:
inner.m
From this we can tell what the correct way to fix m
within demo_inner
is in the two different models.
Difference from condition
A very similar functionality is also provided by condition
which, not surprisingly, conditions variables instead of fixing them. The only difference between fixing and conditioning is as follows:
condition
ed variables are considered to be observations, and are thus included in the computationlogjoint
andloglikelihood
, but not inlogprior
.fix
ed variables are considered to be constant, and are thus not included in any log-probability computations.
julia> @model function demo()
m ~ Normal()
x ~ Normal(m, 1)
return (; m=m, x=x)
end
demo (generic function with 2 methods)
julia> model = demo();
julia> model_fixed = fix(model, m = 1.0);
julia> model_conditioned = condition(model, m = 1.0);
julia> logjoint(model_fixed, (x=1.0,))
-0.9189385332046728
julia> # Different!
logjoint(model_conditioned, (x=1.0,))
-2.3378770664093453
julia> # And the difference is the missing log-probability of `m`:
logjoint(model_fixed, (x=1.0,)) + logpdf(Normal(), 1.0) == logjoint(model_conditioned, (x=1.0,))
true
DynamicPPL.fix
— Methodfix([context::AbstractContext,] values::NamedTuple)
fix([context::AbstractContext]; values...)
Return FixedContext
with values
and context
if values
is non-empty, otherwise return context
which is DefaultContext
by default.
See also: unfix
DynamicPPL.fixed
— Methodfixed(context::AbstractContext)
Return the values that are fixed under context
.
Note that this will recursively traverse the context stack and return a merged version of the fix values.
DynamicPPL.fixed
— Methodfixed(model::Model)
Return the fixed values in model
.
Examples
julia> using Distributions
julia> using DynamicPPL: fixed, contextualize
julia> @model function demo()
m ~ Normal()
x ~ Normal(m, 1)
end
demo (generic function with 2 methods)
julia> m = demo();
julia> # Returns all the variables we have fixed on + their values.
fixed(fix(m, x=100.0, m=1.0))
(x = 100.0, m = 1.0)
julia> # Nested ones also work (note that `PrefixContext` does nothing to the result).
cm = fix(contextualize(m, PrefixContext{:a}(fix(m=1.0))), x=100.0);
julia> fixed(cm)
(x = 100.0, m = 1.0)
julia> # Since we fixed on `m`, not `a.m` as it will appear after prefixed,
# `a.m` is treated as a random variable.
keys(VarInfo(cm))
1-element Vector{VarName{Symbol("a.m"), typeof(identity)}}:
a.m
julia> # If we instead fix on `a.m`, `m` in the model will be considered an observation.
cm = fix(contextualize(m, PrefixContext{:a}(fix(var"a.m"=1.0))), x=100.0);
julia> fixed(cm).x
100.0
julia> fixed(cm).var"a.m"
1.0
julia> keys(VarInfo(cm)) # <= no variables are sampled
VarName[]
DynamicPPL.float_type_with_fallback
— Methodfloat_type_with_fallback(x)
Return type corresponding to float(typeof(x))
if possible; otherwise return Real
.
DynamicPPL.generate_dot_tilde
— Methodgenerate_dot_tilde(left, right)
Generate the expression that replaces left .~ right
in the model body.
DynamicPPL.generate_mainbody
— Methodgenerate_mainbody(mod, expr, warn)
Generate the body of the main evaluation function from expression expr
and arguments args
.
If warn
is true, a warning is displayed if internal variables are used in the model definition.
DynamicPPL.generate_tilde
— Methodgenerate_tilde(left, right)
Generate an observe
expression for data variables and assume
expression for parameter variables.
DynamicPPL.generated_quantities
— Methodgenerated_quantities(model::Model, chain::AbstractChains)
Execute model
for each of the samples in chain
and return an array of the values returned by the model
for each sample.
Examples
General
Often you might have additional quantities computed inside the model that you want to inspect, e.g.
@model function demo(x)
# sample and observe
θ ~ Prior()
x ~ Likelihood()
return interesting_quantity(θ, x)
end
m = demo(data)
chain = sample(m, alg, n)
# To inspect the `interesting_quantity(θ, x)` where `θ` is replaced by samples
# from the posterior/`chain`:
generated_quantities(m, chain) # <= results in a `Vector` of returned values
# from `interesting_quantity(θ, x)`
Concrete (and simple)
julia> using DynamicPPL, Turing
julia> @model function demo(xs)
s ~ InverseGamma(2, 3)
m_shifted ~ Normal(10, √s)
m = m_shifted - 10
for i in eachindex(xs)
xs[i] ~ Normal(m, √s)
end
return (m, )
end
demo (generic function with 1 method)
julia> model = demo(randn(10));
julia> chain = sample(model, MH(), 10);
julia> generated_quantities(model, chain)
10×1 Array{Tuple{Float64},2}:
(2.1964758025119338,)
(2.1964758025119338,)
(0.09270081916291417,)
(0.09270081916291417,)
(0.09270081916291417,)
(0.09270081916291417,)
(0.09270081916291417,)
(0.043088571494005024,)
(-0.16489786710222099,)
(-0.16489786710222099,)
DynamicPPL.generated_quantities
— Methodgenerated_quantities(model::Model, parameters::NamedTuple)
generated_quantities(model::Model, values, keys)
generated_quantities(model::Model, values, keys)
Execute model
with variables keys
set to values
and return the values returned by the model
.
If a NamedTuple
is given, keys=keys(parameters)
and values=values(parameters)
.
Example
julia> using DynamicPPL, Distributions
julia> @model function demo(xs)
s ~ InverseGamma(2, 3)
m_shifted ~ Normal(10, √s)
m = m_shifted - 10
for i in eachindex(xs)
xs[i] ~ Normal(m, √s)
end
return (m, )
end
demo (generic function with 2 methods)
julia> model = demo(randn(10));
julia> parameters = (; s = 1.0, m_shifted=10);
julia> generated_quantities(model, parameters)
(0.0,)
julia> generated_quantities(model, values(parameters), keys(parameters))
(0.0,)
DynamicPPL.get_matching_type
— Methodget_matching_type(spl::AbstractSampler, vi, ::TypeWrap{T}) where {T}
Get the specialized version of type T
for sampler spl
.
For example, if T === Float64
and spl::Hamiltonian
, the matching type is eltype(vi[spl])
.
DynamicPPL.get_num_produce
— Methodget_num_produce(vi::VarInfo)
Return the num_produce
of vi
.
DynamicPPL.getall
— Methodgetall(vi::VarInfo)
Return the values of all the variables in vi
.
The values may or may not be transformed to Euclidean space.
DynamicPPL.getargnames
— Methodgetargnames(model::Model)
Get a tuple of the argument names of the model
.
DynamicPPL.getargs_assignment
— Methodgetargs_assignment(x)
Return the arguments L
and R
, if x
is an expression of the form L = R
, or nothing
otherwise.
DynamicPPL.getargs_coloneq
— Methodgetargs_coloneq(x)
Return the arguments L
and R
, if x
is an expression of the form L := R
, or nothing
otherwise.
DynamicPPL.getargs_dottilde
— Methodgetargs_dottilde(x)
Return the arguments L
and R
, if x
is an expression of the form L .~ R
or (~).(L, R)
, or nothing
otherwise.
DynamicPPL.getargs_tilde
— Methodgetargs_tilde(x)
Return the arguments L
and R
, if x
is an expression of the form L ~ R
, or nothing
otherwise.
DynamicPPL.getconditioned
— Methodgetconditioned(context::AbstractContext, vn::VarName)
Return value of vn
in context
.
DynamicPPL.getconditioned_nested
— Methodgetconditioned_nested(context, vn)
Return the value of the parameter corresponding to vn
from context
or its descendants.
This is contrast to getconditioned
which only returns the value vn
in context
, not recursively looking into its descendants.
DynamicPPL.getdist
— Methodgetdist(vi::VarInfo, vn::VarName)
Return the distribution from which vn
was sampled in vi
.
DynamicPPL.getfixed
— Methodgetfixed(context::AbstractContext, vn::VarName)
Return the fixed value of vn
in context
.
DynamicPPL.getfixed_nested
— Methodgetfixed_nested(context, vn)
Return the fixed value of the parameter corresponding to vn
from context
or its descendants.
This is contrast to getfixed
which only returns the value vn
in context
, not recursively looking into its descendants.
DynamicPPL.getgid
— Methodgetgid(vi::VarInfo, vn::VarName)
Return the set of sampler selectors associated with vn
in vi
.
DynamicPPL.getidx
— Methodgetidx(vi::VarInfo, vn::VarName)
Return the index of vn
in the metadata of vi
corresponding to vn
.
DynamicPPL.getindex_raw
— Functiongetindex_raw(vi::AbstractVarInfo, vn::VarName[, dist::Distribution])
getindex_raw(vi::AbstractVarInfo, vns::Vector{<:VarName}[, dist::Distribution])
Return the current value(s) of vn
(vns
) in vi
.
If dist
is specified, the value(s) will be reshaped accordingly.
See also: getindex(vi::AbstractVarInfo, vn::VarName, dist::Distribution)
The difference between getindex(vi, vn, dist)
and getindex_raw
is that getindex
will also transform the value(s) to the support of the distribution(s). This is not the case for getindex_raw
.
DynamicPPL.getindex_varname
— Functiongetindex_varname(chain::AbstractChains, sample_idx, varname::VarName, chain_idx)
Return the value of varname
in chain
at sample_idx
and chain_idx
.
Whether this method is implemented for chains
is indicated by supports_varname_indexing
.
DynamicPPL.getlogp
— Functiongetlogp(vi::AbstractVarInfo)
Return the log of the joint probability of the observed data and parameters sampled in vi
.
DynamicPPL.getmetadata
— Methodgetmetadata(vi::VarInfo, vn::VarName)
Return the metadata in vi
that belongs to vn
.
DynamicPPL.getmissings
— Methodgetmissings(model::Model)
Get a tuple of the names of the missing arguments of the model
.
DynamicPPL.getmodel
— Methodgetmodel(f)
Return the DynamicPPL.Model
wrapped in the given log-density function f
.
DynamicPPL.getorder
— Methodgetorder(vi::VarInfo, vn::VarName)
Get the order
of vn
in vi
, where order
is the number of observe
statements run before sampling vn
.
DynamicPPL.getparams
— Methodgetparams(f::LogDensityFunction)
Return the parameters of the wrapped varinfo as a vector.
DynamicPPL.getrange
— Methodgetrange(vi::VarInfo, vn::VarName)
Return the index range of vn
in the metadata of vi
.
DynamicPPL.getranges
— Methodgetranges(vi::VarInfo, vns::Vector{<:VarName})
Return the indices of vns
in the metadata of vi
corresponding to vn
.
DynamicPPL.getsampler
— Methodgetsampler(context)
Return the sampler of the context context
.
This will traverse the context tree until it reaches the first SamplingContext
, at which point it will return the sampler of that context.
DynamicPPL.getval
— Methodgetval(vi::UntypedVarInfo, vview::Union{Int, UnitRange, Vector{Int}})
Return a view vi.vals[vview]
.
DynamicPPL.getval
— Methodgetval(vi::VarInfo, vn::VarName)
Return the value(s) of vn
.
The values may or may not be transformed to Euclidean space.
DynamicPPL.getval
— Methodgetval(vi::VarInfo, vns::Vector{<:VarName})
Return the value(s) of vns
.
The values may or may not be transformed to Euclidean space.
DynamicPPL.getvalue
— Methodgetvalue(vals, vn::VarName)
Return the value(s) in vals
represented by vn
.
Note that this method is different from getindex
. See examples below.
Examples
For NamedTuple
:
julia> vals = (x = [1.0],);
julia> DynamicPPL.getvalue(vals, @varname(x)) # same as `getindex`
1-element Vector{Float64}:
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1])) # different from `getindex`
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[2]))
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
For AbstractDict
:
julia> vals = Dict(@varname(x) => [1.0]);
julia> DynamicPPL.getvalue(vals, @varname(x)) # same as `getindex`
1-element Vector{Float64}:
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1])) # different from `getindex`
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[2]))
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
In the AbstractDict
case we can also have keys such as v[1]
:
julia> vals = Dict(@varname(x[1]) => [1.0,]);
julia> DynamicPPL.getvalue(vals, @varname(x[1])) # same as `getindex`
1-element Vector{Float64}:
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1][1])) # different from `getindex`
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1][2]))
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
julia> DynamicPPL.getvalue(vals, @varname(x[2][1]))
ERROR: KeyError: key x[2][1] not found
[...]
DynamicPPL.hasconditioned
— Methodhasconditioned(context::AbstractContext, vn::VarName)
Return true
if vn
is found in context
.
DynamicPPL.hasconditioned_nested
— Methodhasconditioned_nested(context, vn)
Return true
if vn
is found in context
or any of its descendants.
This is contrast to hasconditioned(::AbstractContext, ::VarName)
which only checks for vn
in context
, not recursively checking if vn
is in any of its descendants.
DynamicPPL.hasfixed
— Methodhasfixed(context::AbstractContext, vn::VarName)
Return true
if a fixed value for vn
is found in context
.
DynamicPPL.hasfixed_nested
— Methodhasfixed_nested(context, vn)
Return true
if a fixed value for vn
is found in context
or any of its descendants.
This is contrast to hasfixed(::AbstractContext, ::VarName)
which only checks for vn
in context
, not recursively checking if vn
is in any of its descendants.
DynamicPPL.hassampler
— Methodhassampler(context)
Return true
if context
has a sampler.
DynamicPPL.hasvalue
— Methodhasvalue(vals, vn::VarName)
Determine whether vals
has a mapping for a given vn
, as compatible with getvalue
.
Examples
With x
as a NamedTuple
:
julia> DynamicPPL.hasvalue((x = 1.0, ), @varname(x))
true
julia> DynamicPPL.hasvalue((x = 1.0, ), @varname(x[1]))
false
julia> DynamicPPL.hasvalue((x = [1.0],), @varname(x))
true
julia> DynamicPPL.hasvalue((x = [1.0],), @varname(x[1]))
true
julia> DynamicPPL.hasvalue((x = [1.0],), @varname(x[2]))
false
With x
as a AbstractDict
:
julia> DynamicPPL.hasvalue(Dict(@varname(x) => 1.0, ), @varname(x))
true
julia> DynamicPPL.hasvalue(Dict(@varname(x) => 1.0, ), @varname(x[1]))
false
julia> DynamicPPL.hasvalue(Dict(@varname(x) => [1.0]), @varname(x))
true
julia> DynamicPPL.hasvalue(Dict(@varname(x) => [1.0]), @varname(x[1]))
true
julia> DynamicPPL.hasvalue(Dict(@varname(x) => [1.0]), @varname(x[2]))
false
In the AbstractDict
case we can also have keys such as v[1]
:
julia> vals = Dict(@varname(x[1]) => [1.0,]);
julia> DynamicPPL.hasvalue(vals, @varname(x[1])) # same as `haskey`
true
julia> DynamicPPL.hasvalue(vals, @varname(x[1][1])) # different from `haskey`
true
julia> DynamicPPL.hasvalue(vals, @varname(x[1][2]))
false
julia> DynamicPPL.hasvalue(vals, @varname(x[2][1]))
false
DynamicPPL.inargnames
— Methodinargnames(varname::VarName, model::Model)
Statically check whether the variable of name varname
is an argument of the model
.
Possibly existing indices of varname
are neglected.
DynamicPPL.increment_num_produce!
— Methodincrement_num_produce!(vi::VarInfo)
Add 1 to num_produce
in vi
.
DynamicPPL.infer_nested_eltype
— Methodinfer_nested_eltype(x::Type)
Recursively unwrap the type, returning the first type where eltype(x) === typeof(x)
.
This is useful for obtaining a reasonable default eltype
in deeply nested types.
Examples
julia> # `AbstractArrary`
DynamicPPL.infer_nested_eltype(typeof([1.0]))
Float64
julia> # `NamedTuple` with `Float32`
DynamicPPL.infer_nested_eltype(typeof((x = [1f0], )))
Float32
julia> # `AbstractDict`
DynamicPPL.infer_nested_eltype(typeof(Dict(:x => [1.0, ])))
Float64
julia> # Nesting of containers.
DynamicPPL.infer_nested_eltype(typeof([Dict(:x => 1.0,) ]))
Float64
julia> DynamicPPL.infer_nested_eltype(typeof([Dict(:x => [1.0,],) ]))
Float64
julia> # Empty `Tuple`.
DynamicPPL.infer_nested_eltype(typeof(()))
Any
julia> # Empty `Dict`.
DynamicPPL.infer_nested_eltype(typeof(Dict()))
Any
DynamicPPL.initialsampler
— Methodinitialsampler(sampler::Sampler)
Return the sampler that is used for generating the initial parameters when sampling with sampler
.
By default, it returns an instance of SampleFromPrior
.
DynamicPPL.initialstep
— Functioninitialstep(rng, model, sampler, varinfo; kwargs...)
Perform the initial sampling step of the sampler
for the model
.
The varinfo
contains the initial samples, which can be provided by the user or sampled randomly.
DynamicPPL.inmissings
— Methodinmissings(varname::VarName, model::Model)
Statically check whether the variable of name varname
is a statically declared unobserved variable of the model
.
Possibly existing indices of varname
are neglected.
DynamicPPL.invlink!!
— Methodinvlink!!([t::AbstractTransformation, ]vi::AbstractVarInfo, model::Model)
invlink!!([t::AbstractTransformation, ]vi::AbstractVarInfo, spl::AbstractSampler, model::Model)
Transform the variables in vi
to their constrained space, using the (inverse of) transformation t
, mutating vi
if possible.
If t
is not provided, default_transformation(model, vi)
will be used.
See also: default_transformation
, link!!
.
DynamicPPL.invlink!
— Methodinvlink!(vi::VarInfo, spl::AbstractSampler)
Transform the values of the random variables sampled by spl
in vi
from the Euclidean space back to the support of their distributions and sets their corresponding "trans"
flag values to false
.
DynamicPPL.invlink_and_reconstruct
— Methodinvlink_and_reconstruct(dist, val)
invlink_and_reconstruct(vi::AbstractVarInfo, vn::VarName, dist, val)
Return invlinked and reconstructed val
.
See also: reconstruct_and_link
, reconstruct
.
DynamicPPL.invlink_transform
— Methodinvlink_transform(dist)
Return the unconstrained-to-constrained bijector for distribution dist
.
By default, this is just inverse(link_transform(dist))
.
Note that currently this is not used by Bijectors.logpdf_with_trans
, hence that needs to be overloaded separately if the intention is to change behavior of an existing distribution.
DynamicPPL.invlink_with_logpdf
— Methodinvlink_with_logpdf(vi::AbstractVarInfo, vn::VarName, dist[, x])
Invlink x
and compute the logpdf under dist
including correction from the invlink-transformation.
If x
is not provided, getval(vi, vn)
will be used.
DynamicPPL.is_flagged
— Methodis_flagged(vi::VarInfo, vn::VarName, flag::String)
Check whether vn
has a true value for flag
in vi
.
DynamicPPL.isassumption
— Functionisassumption(expr[, vn])
Return an expression that can be evaluated to check if expr
is an assumption in the model.
Let expr
be :(x[1])
. It is an assumption in the following cases: 1. x
is not among the input data to the model, 2. x
is among the input data to the model but with a value missing
, or 3. x
is among the input data to the model with a value other than missing, but x[1] === missing
.
When expr
is not an expression or symbol (i.e., a literal), this expands to false
.
If vn
is specified, it will be assumed to refer to a expression which evaluates to a VarName
, and this will be used in the subsequent checks. If vn
is not specified, AbstractPPL.varname(expr, need_concretize(expr))
will be used in its place.
DynamicPPL.isfuncdef
— Methodisfuncdef(expr)
Return true
if expr
is any form of function definition, and false
otherwise.
DynamicPPL.islinked
— Methodislinked(vi::VarInfo, spl::Union{Sampler, SampleFromPrior})
Check whether vi
is in the transformed space for a particular sampler spl
.
Turing's Hamiltonian samplers use the link
and invlink
functions from Bijectors.jl to map a constrained variable (for example, one bounded to the space [0, 1]
) from its constrained space to the set of real numbers. islinked
checks if the number is in the constrained space or the real space.
DynamicPPL.isliteral
— Methodisliteral(expr)
Return true
if expr
is a literal, e.g. 1.0
or [1.0, ]
, and false
otherwise.
DynamicPPL.istrans
— Methodistrans(vi::AbstractVarInfo[, vns::Union{VarName, AbstractVector{<:Varname}}])
Return true
if vi
is working in unconstrained space, and false
if vi
is assuming realizations to be in support of the corresponding distributions.
If vns
is provided, then only check if this/these varname(s) are transformed.
Not all implementations of AbstractVarInfo
support transforming only a subset of the variables.
DynamicPPL.leafcontext
— Methodleafcontext(context)
Return the leaf of context
, i.e. the first descendant context that IsLeaf
.
DynamicPPL.link!!
— Methodlink!!([t::AbstractTransformation, ]vi::AbstractVarInfo, model::Model)
link!!([t::AbstractTransformation, ]vi::AbstractVarInfo, spl::AbstractSampler, model::Model)
Transform the variables in vi
to their linked space, using the transformation t
, mutating vi
if possible.
If t
is not provided, default_transformation(model, vi)
will be used.
See also: default_transformation
, invlink!!
.
DynamicPPL.link!
— Methodlink!(vi::VarInfo, spl::Sampler)
Transform the values of the random variables sampled by spl
in vi
from the support of their distributions to the Euclidean space and set their corresponding "trans"
flag values to true
.
DynamicPPL.link_transform
— Methodlink_transform(dist)
Return the constrained-to-unconstrained bijector for distribution dist
.
By default, this is just Bijectors.bijector(dist)
.
Note that currently this is not used by Bijectors.logpdf_with_trans
, hence that needs to be overloaded separately if the intention is to change behavior of an existing distribution.
DynamicPPL.loadstate
— Methodloadstate(data)
Load sampler state from data
.
By default, data
is returned.
DynamicPPL.logjoint
— Methodlogjoint(model::Model, chain::AbstractMCMC.AbstractChains)
Return an array of log joint probabilities evaluated at each sample in an MCMC chain
.
Examples
julia> using MCMCChains, Distributions
julia> @model function demo_model(x)
s ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s))
for i in eachindex(x)
x[i] ~ Normal(m, sqrt(s))
end
end;
julia> # construct a chain of samples using MCMCChains
chain = Chains(rand(10, 2, 3), [:s, :m]);
julia> logjoint(demo_model([1., 2.]), chain);
DynamicPPL.logjoint
— Methodlogjoint(model::Model, varinfo::AbstractVarInfo)
Return the log joint probability of variables varinfo
for the probabilistic model
.
See logprior
and loglikelihood
.
DynamicPPL.logjoint
— Methodlogjoint(model::Model, θ)
Return the log joint probability of variables θ
for the probabilistic model
.
See logprior
and loglikelihood
.
Examples
julia> @model function demo(x)
m ~ Normal()
for i in eachindex(x)
x[i] ~ Normal(m, 1.0)
end
end
demo (generic function with 2 methods)
julia> # Using a `NamedTuple`.
logjoint(demo([1.0]), (m = 100.0, ))
-9902.33787706641
julia> # Using a `OrderedDict`.
logjoint(demo([1.0]), OrderedDict(@varname(m) => 100.0))
-9902.33787706641
julia> # Truth.
logpdf(Normal(100.0, 1.0), 1.0) + logpdf(Normal(), 100.0)
-9902.33787706641
DynamicPPL.logprior
— Methodlogprior(model::Model, chain::AbstractMCMC.AbstractChains)
Return an array of log prior probabilities evaluated at each sample in an MCMC chain
.
Examples
julia> using MCMCChains, Distributions
julia> @model function demo_model(x)
s ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s))
for i in eachindex(x)
x[i] ~ Normal(m, sqrt(s))
end
end;
julia> # construct a chain of samples using MCMCChains
chain = Chains(rand(10, 2, 3), [:s, :m]);
julia> logprior(demo_model([1., 2.]), chain);
DynamicPPL.logprior
— Methodlogprior(model::Model, varinfo::AbstractVarInfo)
Return the log prior probability of variables varinfo
for the probabilistic model
.
See also logjoint
and loglikelihood
.
DynamicPPL.logprior
— Methodlogprior(model::Model, θ)
Return the log prior probability of variables θ
for the probabilistic model
.
See also logjoint
and loglikelihood
.
Examples
julia> @model function demo(x)
m ~ Normal()
for i in eachindex(x)
x[i] ~ Normal(m, 1.0)
end
end
demo (generic function with 2 methods)
julia> # Using a `NamedTuple`.
logprior(demo([1.0]), (m = 100.0, ))
-5000.918938533205
julia> # Using a `OrderedDict`.
logprior(demo([1.0]), OrderedDict(@varname(m) => 100.0))
-5000.918938533205
julia> # Truth.
logpdf(Normal(), 100.0)
-5000.918938533205
DynamicPPL.make_evaluate_args_and_kwargs
— Methodmake_evaluate_args_and_kwargs(model, varinfo, context)
Return the arguments and keyword arguments to be passed to the evaluator of the model, i.e. model.f
e.
DynamicPPL.matchingvalue
— Methodmatchingvalue(sampler, vi, value)
matchingvalue(context::AbstractContext, vi, value)
Convert the value
to the correct type for the sampler
or context
and the vi
object.
For a context
that is not a SamplingContext
, we fall back to matchingvalue(SampleFromPrior(), vi, value)
.
DynamicPPL.maybe_invlink_and_reconstruct
— Methodmaybe_invlink_and_reconstruct(vi::AbstractVarInfo, vn::VarName, dist, val)
Return reconstructed val
, possibly invlinked if istrans(vi, vn)
is true
.
DynamicPPL.maybe_invlink_before_eval!!
— Methodmaybe_invlink_before_eval!!([t::Transformation,] vi, context, model)
Return a possibly invlinked version of vi
.
This will be called prior to model
evaluation, allowing one to perform a single invlink!!
before evaluation rather than lazyily evaluating the transforms on as-we-need basis as is done with DynamicTransformation
.
See also: StaticTransformation
, DynamicTransformation
.
Examples
julia> using DynamicPPL, Distributions, Bijectors
julia> @model demo() = x ~ Normal()
demo (generic function with 2 methods)
julia> # By subtyping `Transform`, we inherit the `(inv)link!!`.
struct MyBijector <: Bijectors.Transform end
julia> # Define some dummy `inverse` which will be used in the `link!!` call.
Bijectors.inverse(f::MyBijector) = identity
julia> # We need to define `with_logabsdet_jacobian` for `MyBijector`
# (`identity` already has `with_logabsdet_jacobian` defined)
function Bijectors.with_logabsdet_jacobian(::MyBijector, x)
# Just using a large number of the logabsdet-jacobian term
# for demonstration purposes.
return (x, 1000)
end
julia> # Change the `default_transformation` for our model to be a
# `StaticTransformation` using `MyBijector`.
function DynamicPPL.default_transformation(::Model{typeof(demo)})
return DynamicPPL.StaticTransformation(MyBijector())
end
julia> model = demo();
julia> vi = SimpleVarInfo(x=1.0)
SimpleVarInfo((x = 1.0,), 0.0)
julia> # Uses the `inverse` of `MyBijector`, which we have defined as `identity`
vi_linked = link!!(vi, model)
Transformed SimpleVarInfo((x = 1.0,), 0.0)
julia> # Now performs a single `invlink!!` before model evaluation.
logjoint(model, vi_linked)
-1001.4189385332047
DynamicPPL.maybe_reconstruct_and_link
— Methodmaybe_link_and_reconstruct(vi::AbstractVarInfo, vn::VarName, dist, val)
Return reconstructed val
, possibly linked if istrans(vi, vn)
is true
.
DynamicPPL.merge_transformations
— Methodmerge_transformations(transformation_left, transformation_right)
Merge two transformations.
The main use of this is in merge(::AbstractVarInfo, ::AbstractVarInfo)
.
DynamicPPL.need_concretize
— Methodneed_concretize(expr)
Return true
if expr
needs to be concretized, i.e., if it contains a colon :
or requires a dynamic optic.
Examples
```jldoctest; setup=:(using Accessors) julia> DynamicPPL.need_concretize(:(x[1, :])) true
julia> DynamicPPL.need_concretize(:(x[1, end])) true
julia> DynamicPPL.need_concretize(:(x[1, 1])) false
DynamicPPL.nested_getindex
— Methodnested_getindex(values::AbstractDict, vn::VarName)
Return value corresponding to vn
in values
by also looking in the the actual values of the dict.
DynamicPPL.observations
— Methodobservations(model::Model)
Alias for conditioned
.
DynamicPPL.parent
— Methodparent(optic)
Return the parent optic. If optic
doesn't have a parent, nothing
is returned.
See also: [parent_and_child
].
Examples
julia> parent(@o(_.a[1]))
(@o _.a)
julia> # Parent of optic without parents results in `nothing`.
(parent ∘ parent)(@o(_.a[1])) === nothing
true
DynamicPPL.parent
— Methodparent(vn::VarName)
Return the parent VarName
.
Examples
julia> parent(@varname(x.a[1]))
x.a
julia> (parent ∘ parent)(@varname(x.a[1]))
x
julia> (parent ∘ parent ∘ parent)(@varname(x.a[1]))
x
DynamicPPL.parent_and_child
— Methodparent_and_child(optic)
Return a 2-tuple of optics (parent, child)
where parent
is the parent optic of optic
and child
is the child optic of optic
.
If optic
does not have a parent, we return (nothing, optic)
.
See also: [parent
].
Examples
julia> parent_and_child(@o(_.a[1]))
((@o _.a), (@o _[1]))
julia> parent_and_child(@o(_.a))
(nothing, (@o _.a))
DynamicPPL.pointwise_loglikelihoods
— Methodpointwise_loglikelihoods(model::Model, chain::Chains, keytype = String)
Runs model
on each sample in chain
returning a OrderedDict{String, Matrix{Float64}}
with keys corresponding to symbols of the observations, and values being matrices of shape (num_chains, num_samples)
.
keytype
specifies what the type of the keys used in the returned OrderedDict
are. Currently, only String
and VarName
are supported.
Notes
Say y
is a Vector
of n
i.i.d. Normal(μ, σ)
variables, with μ
and σ
both being <:Real
. Then the observe (i.e. when the left-hand side is an observation) statements can be implemented in three ways:
- using a
for
loop:
for i in eachindex(y)
y[i] ~ Normal(μ, σ)
end
- using
.~
:
y .~ Normal(μ, σ)
- using
MvNormal
:
y ~ MvNormal(fill(μ, n), σ^2 * I)
In (1) and (2), y
will be treated as a collection of n
i.i.d. 1-dimensional variables, while in (3) y
will be treated as a single n-dimensional observation.
This is important to keep in mind, in particular if the computation is used for downstream computations.
Examples
From chain
julia> using DynamicPPL, Turing
julia> @model function demo(xs, y)
s ~ InverseGamma(2, 3)
m ~ Normal(0, √s)
for i in eachindex(xs)
xs[i] ~ Normal(m, √s)
end
y ~ Normal(m, √s)
end
demo (generic function with 1 method)
julia> model = demo(randn(3), randn());
julia> chain = sample(model, MH(), 10);
julia> pointwise_loglikelihoods(model, chain)
OrderedDict{String,Array{Float64,2}} with 4 entries:
"xs[1]" => [-1.42932; -2.68123; … ; -1.66333; -1.66333]
"xs[2]" => [-1.6724; -0.861339; … ; -1.62359; -1.62359]
"xs[3]" => [-1.42862; -2.67573; … ; -1.66251; -1.66251]
"y" => [-1.51265; -0.914129; … ; -1.5499; -1.5499]
julia> pointwise_loglikelihoods(model, chain, String)
OrderedDict{String,Array{Float64,2}} with 4 entries:
"xs[1]" => [-1.42932; -2.68123; … ; -1.66333; -1.66333]
"xs[2]" => [-1.6724; -0.861339; … ; -1.62359; -1.62359]
"xs[3]" => [-1.42862; -2.67573; … ; -1.66251; -1.66251]
"y" => [-1.51265; -0.914129; … ; -1.5499; -1.5499]
julia> pointwise_loglikelihoods(model, chain, VarName)
OrderedDict{VarName,Array{Float64,2}} with 4 entries:
xs[1] => [-1.42932; -2.68123; … ; -1.66333; -1.66333]
xs[2] => [-1.6724; -0.861339; … ; -1.62359; -1.62359]
xs[3] => [-1.42862; -2.67573; … ; -1.66251; -1.66251]
y => [-1.51265; -0.914129; … ; -1.5499; -1.5499]
Broadcasting
Note that x .~ Dist()
will treat x
as a collection of independent observations rather than as a single observation.
julia> @model function demo(x)
x .~ Normal()
end;
julia> m = demo([1.0, ]);
julia> ℓ = pointwise_loglikelihoods(m, VarInfo(m)); first(ℓ[@varname(x[1])])
-1.4189385332046727
julia> m = demo([1.0; 1.0]);
julia> ℓ = pointwise_loglikelihoods(m, VarInfo(m)); first.((ℓ[@varname(x[1])], ℓ[@varname(x[2])]))
(-1.4189385332046727, -1.4189385332046727)
DynamicPPL.reconstruct
— Methodreconstruct([f, ]dist, val)
Reconstruct val
so that it's compatible with dist
.
If f
is also provided, the reconstruct value will be such that f(reconstruct_val)
is compatible with dist
.
DynamicPPL.reconstruct_and_link
— Methodreconstruct_and_link(dist, val)
reconstruct_and_link(vi::AbstractVarInfo, vn::VarName, dist, val)
Return linked val
but reconstruct before linking, if necessary.
Note that unlike invlink_and_reconstruct
, this does not necessarily return a reconstructed value, i.e. a value of the same type and shape as expected by dist
.
See also: invlink_and_reconstruct
, reconstruct
.
DynamicPPL.remove_parent_optic
— Methodremove_parent_optic(vn_parent::VarName, vn_child::VarName)
Remove the parent optic vn_parent
from vn_child
.
Examples
julia> remove_parent_optic(@varname(x), @varname(x.a))
(@o _.a)
julia> remove_parent_optic(@varname(x), @varname(x.a[1]))
(@o _.a[1])
julia> remove_parent_optic(@varname(x.a), @varname(x.a[1]))
(@o _[1])
julia> remove_parent_optic(@varname(x.a), @varname(x.a[1].b))
(@o _[1].b)
julia> remove_parent_optic(@varname(x.a), @varname(x.a))
ERROR: Could not find x.a in x.a
julia> remove_parent_optic(@varname(x.a[2]), @varname(x.a[1]))
ERROR: Could not find x.a[2] in x.a[1]
DynamicPPL.replace_returns
— Methodreplace_returns(expr)
Return Expr
with all return ...
statements replaced with return ..., DynamicPPL.return_values(__varinfo__)
.
Note that this method will not replace return
statements within function definitions. This is checked using isfuncdef
.
DynamicPPL.reset_num_produce!
— Methodreset_num_produce!(vi::VarInfo)
Reset the value of num_produce
the log of the joint probability of the observed data and parameters sampled in vi
to 0.
DynamicPPL.resetlogp!!
— Methodresetlogp!!(vi::AbstractVarInfo)
Reset the value of the log of the joint probability of the observed data and parameters sampled in vi
to 0, mutating if it makes sense.
DynamicPPL.set_flag!
— Methodset_flag!(vi::VarInfo, vn::VarName, flag::String)
Set vn
's value for flag
to true
in vi
.
DynamicPPL.set_num_produce!
— Methodset_num_produce!(vi::VarInfo, n::Int)
Set the num_produce
field of vi
to n
.
DynamicPPL.set_retained_vns_del_by_spl!
— Methodset_retained_vns_del_by_spl!(vi::VarInfo, spl::Sampler)
Set the "del"
flag of variables in vi
with order > vi.num_produce[]
to true
.
DynamicPPL.setall!
— Methodsetall!(vi::VarInfo, val)
Set the values of all the variables in vi
to val
.
The values may or may not be transformed to Euclidean space.
DynamicPPL.setchildcontext
— Functionsetchildcontext(parent::AbstractContext, child::AbstractContext)
Reconstruct parent
but now using child
is its childcontext
, effectively updating the child context.
Examples
julia> ctx = SamplingContext();
julia> DynamicPPL.childcontext(ctx)
DefaultContext()
julia> ctx_prior = DynamicPPL.setchildcontext(ctx, PriorContext()); # only compute the logprior
julia> DynamicPPL.childcontext(ctx_prior)
PriorContext{Nothing}(nothing)
DynamicPPL.setgid!
— Methodsetgid!(vi::VarInfo, gid::Selector, vn::VarName)
Add gid
to the set of sampler selectors associated with vn
in vi
.
DynamicPPL.setleafcontext
— Methodsetleafcontext(left, right)
Return left
but now with its leaf context replaced by right
.
Note that this also works even if right
is not a leaf context, in which case effectively append right
to left
, dropping the original leaf context of left
.
Examples
julia> using DynamicPPL: leafcontext, setleafcontext, childcontext, setchildcontext, AbstractContext
julia> struct ParentContext{C} <: AbstractContext
context::C
end
julia> DynamicPPL.NodeTrait(::ParentContext) = DynamicPPL.IsParent()
julia> DynamicPPL.childcontext(context::ParentContext) = context.context
julia> DynamicPPL.setchildcontext(::ParentContext, child) = ParentContext(child)
julia> Base.show(io::IO, c::ParentContext) = print(io, "ParentContext(", childcontext(c), ")")
julia> ctx = ParentContext(ParentContext(DefaultContext()))
ParentContext(ParentContext(DefaultContext()))
julia> # Replace the leaf context with another leaf.
leafcontext(setleafcontext(ctx, PriorContext()))
PriorContext{Nothing}(nothing)
julia> # Append another parent context.
setleafcontext(ctx, ParentContext(DefaultContext()))
ParentContext(ParentContext(ParentContext(DefaultContext())))
DynamicPPL.setlogp!!
— Functionsetlogp!!(vi::AbstractVarInfo, logp)
Set the log of the joint probability of the observed data and parameters sampled in vi
to logp
, mutating if it makes sense.
DynamicPPL.setmodel
— Methodsetmodel(f, model[, adtype])
Set the DynamicPPL.Model
in the given log-density function f
to model
.
Note that if f
is a LogDensityProblemsAD.ADGradientWrapper
wrapping a DynamicPPL.LogDensityFunction
, performing an update of the model
in f
might require recompilation of the gradient tape, depending on the AD backend.
DynamicPPL.setorder!
— Methodsetorder!(vi::VarInfo, vn::VarName, index::Int)
Set the order
of vn
in vi
to index
, where order
is the number of observe statements run before sampling
vn`.
DynamicPPL.setrange!
— Methodsetrange!(vi::VarInfo, vn::VarName, range)
Set the index range of vn
in the metadata of vi
to range
.
DynamicPPL.settrans!!
— Functionsettrans!!(vi::AbstractVarInfo, trans::Bool[, vn::VarName])
Return vi
with istrans(vi, vn)
evaluating to true
.
If vn
is not specified, then istrans(vi)
evaluates to true
for all variables.
DynamicPPL.setval!
— Methodsetval!(vi::UntypedVarInfo, val, vview::Union{Int, UnitRange, Vector{Int}})
Set the value of vi.vals[vview]
to val
.
DynamicPPL.setval!
— Methodsetval!(vi::VarInfo, val, vn::VarName)
Set the value(s) of vn
in the metadata of vi
to val
.
The values may or may not be transformed to Euclidean space.
DynamicPPL.setval!
— Methodsetval!(vi::VarInfo, x)
setval!(vi::VarInfo, values, keys)
setval!(vi::VarInfo, chains::AbstractChains, sample_idx::Int, chain_idx::Int)
Set the values in vi
to the provided values and leave those which are not present in x
or chains
unchanged.
Notes
This is rather limited for two reasons:
- It uses
subsumes_string(string(vn), map(string, keys))
under the hood, and therefore suffers from the same limitations assubsumes_string
. - It will set every
vn
present inkeys
. It will NOT however set everyk
present inkeys
. This means that ifvn == [m[1], m[2]]
, representing some variablem
, callingsetval!(vi, (m = [1.0, 2.0]))
will be a no-op since it will try to findm[1]
andm[2]
inkeys((m = [1.0, 2.0]))
.
Example
julia> using DynamicPPL, Distributions, StableRNGs
julia> @model function demo(x)
m ~ Normal()
for i in eachindex(x)
x[i] ~ Normal(m, 1)
end
end;
julia> rng = StableRNG(42);
julia> m = demo([missing]);
julia> var_info = DynamicPPL.VarInfo(rng, m);
julia> var_info[@varname(m)]
-0.6702516921145671
julia> var_info[@varname(x[1])]
-0.22312984965118443
julia> DynamicPPL.setval!(var_info, (m = 100.0, )); # set `m` and and keep `x[1]`
julia> var_info[@varname(m)] # [✓] changed
100.0
julia> var_info[@varname(x[1])] # [✓] unchanged
-0.22312984965118443
julia> m(rng, var_info); # rerun model
julia> var_info[@varname(m)] # [✓] unchanged
100.0
julia> var_info[@varname(x[1])] # [✓] unchanged
-0.22312984965118443
DynamicPPL.setval_and_resample!
— Methodsetval_and_resample!(vi::VarInfo, x)
setval_and_resample!(vi::VarInfo, values, keys)
setval_and_resample!(vi::VarInfo, chains::AbstractChains, sample_idx, chain_idx)
Set the values in vi
to the provided values and those which are not present in x
or chains
to be resampled.
Note that this does not resample the values not provided! It will call setflag!(vi, vn, "del")
for variables vn
for which no values are provided, which means that the next time we call model(vi)
these variables will be resampled.
Note
- This suffers from the same limitations as
setval!
. Seesetval!
for more info.
Example
julia> using DynamicPPL, Distributions, StableRNGs
julia> @model function demo(x)
m ~ Normal()
for i in eachindex(x)
x[i] ~ Normal(m, 1)
end
end;
julia> rng = StableRNG(42);
julia> m = demo([missing]);
julia> var_info = DynamicPPL.VarInfo(rng, m);
julia> var_info[@varname(m)]
-0.6702516921145671
julia> var_info[@varname(x[1])]
-0.22312984965118443
julia> DynamicPPL.setval_and_resample!(var_info, (m = 100.0, )); # set `m` and ready `x[1]` for resampling
julia> var_info[@varname(m)] # [✓] changed
100.0
julia> var_info[@varname(x[1])] # [✓] unchanged
-0.22312984965118443
julia> m(rng, var_info); # sample `x[1]` conditioned on `m = 100.0`
julia> var_info[@varname(m)] # [✓] unchanged
100.0
julia> var_info[@varname(x[1])] # [✓] changed
101.37363069798343
See also
DynamicPPL.splitoptic
— Methodsplitoptic(condition, optic)
Return a 3-tuple (parent, child, issuccess)
where, if issuccess
is true
, parent
is a optic such that condition(parent)
is true
and child ∘ parent == optic
.
If issuccess
is false
, then no such split could be found.
Examples
julia> p, c, issucesss = splitoptic(@o(_.a[1])) do parent
# Succeeds!
parent == @o(_.a)
end
((@o _.a), (@o _[1]), true)
julia> c ∘ p
(@o _.a[1])
julia> splitoptic(@o(_.a[1])) do parent
# Fails!
parent == @o(_.b)
end
(nothing, (@o _.a[1]), false)
DynamicPPL.subset
— Functionsubset(varinfo::AbstractVarInfo, vns::AbstractVector{<:VarName})
Subset a varinfo
to only contain the variables vns
.
The ordering of the variables in the resulting varinfo
is not guaranteed to follow the ordering of the variables in varinfo
. Hence care must be taken, in particular when used in conjunction with other methods which uses the vector-representation of the varinfo
, e.g. getindex(varinfo, sampler)
.
Examples
julia> @model function demo()
s ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s))
x = Vector{Float64}(undef, 2)
x[1] ~ Normal(m, sqrt(s))
x[2] ~ Normal(m, sqrt(s))
end
demo (generic function with 2 methods)
julia> model = demo();
julia> varinfo = VarInfo(model);
julia> keys(varinfo)
4-element Vector{VarName}:
s
m
x[1]
x[2]
julia> for (i, vn) in enumerate(keys(varinfo))
varinfo[vn] = i
end
julia> varinfo[[@varname(s), @varname(m), @varname(x[1]), @varname(x[2])]]
4-element Vector{Float64}:
1.0
2.0
3.0
4.0
julia> # Extract one with only `m`.
varinfo_subset1 = subset(varinfo, [@varname(m),]);
julia> keys(varinfo_subset1)
1-element Vector{VarName{:m, typeof(identity)}}:
m
julia> varinfo_subset1[@varname(m)]
2.0
julia> # Extract one with both `s` and `x[2]`.
varinfo_subset2 = subset(varinfo, [@varname(s), @varname(x[2])]);
julia> keys(varinfo_subset2)
2-element Vector{VarName}:
s
x[2]
julia> varinfo_subset2[[@varname(s), @varname(x[2])]]
2-element Vector{Float64}:
1.0
4.0
subset
is particularly useful when combined with merge(varinfo::AbstractVarInfo)
julia> # Merge the two.
varinfo_subset_merged = merge(varinfo_subset1, varinfo_subset2);
julia> keys(varinfo_subset_merged)
3-element Vector{VarName}:
m
s
x[2]
julia> varinfo_subset_merged[[@varname(s), @varname(m), @varname(x[2])]]
3-element Vector{Float64}:
1.0
2.0
4.0
julia> # Merge the two with the original.
varinfo_merged = merge(varinfo, varinfo_subset_merged);
julia> keys(varinfo_merged)
4-element Vector{VarName}:
s
m
x[1]
x[2]
julia> varinfo_merged[[@varname(s), @varname(m), @varname(x[1]), @varname(x[2])]]
4-element Vector{Float64}:
1.0
2.0
3.0
4.0
Notes
Type-stability
This function is only type-stable when vns
contains only varnames with the same symbol. For exmaple, [@varname(m[1]), @varname(m[2])]
will be type-stable, but [@varname(m[1]), @varname(x)]
will not be.
DynamicPPL.subsumes_string
— Functionsubsumes_string(u::String, v::String[, u_indexing])
Check whether stringified variable name v
describes a sub-range of stringified variable u
.
This is a very restricted version subumes(u::VarName, v::VarName)
only really supporting:
- Scalar:
x
subsumesx[1, 2]
,x[1, 2]
subsumesx[1, 2][3]
, etc.
Note
- To get same matching capabilities as
AbstractPPL.subumes(u::VarName, v::VarName)
for strings, one can always doeval(varname(Meta.parse(u))
to getVarName
ofu
, and similarly tov
. But this is slow.
DynamicPPL.supports_varname_indexing
— Methodsupports_varname_indexing(chain::AbstractChains)
Return true
if chain
supports indexing using VarName
in place of the variable name index.
DynamicPPL.syms
— Methodsyms(vi::VarInfo)
Returns a tuple of the unique symbols of random variables sampled in vi
.
DynamicPPL.tilde_assume!!
— Methodtilde_assume!!(context, right, vn, vi)
Handle assumed variables, e.g., x ~ Normal()
(where x
does occur in the model inputs), accumulate the log probability, and return the sampled value and updated vi
.
By default, calls tilde_assume(context, right, vn, vi)
and accumulates the log probability of vi
with the returned value.
DynamicPPL.tilde_assume
— Methodtilde_assume(context::SamplingContext, right, vn, vi)
Handle assumed variables, e.g., x ~ Normal()
(where x
does occur in the model inputs), accumulate the log probability, and return the sampled value with a context associated with a sampler.
Falls back to
tilde_assume(context.rng, context.context, context.sampler, right, vn, vi)
DynamicPPL.tilde_observe!!
— Methodtilde_observe(context, right, left, vi)
Handle observed constants, e.g., 1.0 ~ Normal()
, accumulate the log probability, and return the observed value.
By default, calls tilde_observe(context, right, left, vi)
and accumulates the log probability of vi
with the returned value.
DynamicPPL.tilde_observe!!
— Methodtilde_observe!!(context, right, left, vname, vi)
Handle observed variables, e.g., x ~ Normal()
(where x
does occur in the model inputs), accumulate the log probability, and return the observed value and updated vi
.
Falls back to tilde_observe!!(context, right, left, vi)
ignoring the information about variable name and indices; if needed, these can be accessed through this function, though.
DynamicPPL.tilde_observe
— Methodtilde_observe(context::SamplingContext, right, left, vi)
Handle observed constants with a context
associated with a sampler.
Falls back to tilde_observe(context.context, context.sampler, right, left, vi)
.
DynamicPPL.transform_args
— Methodtransform_args(args)
Return transformed args
used in both the model constructor and evaluator.
Specifically, this replaces expressions of the form ::Type{TV}=Vector{Float64}
with ::TypeWrap{TV}=TypeWrap{Vector{Float64}}()
to avoid introducing DataType
.
DynamicPPL.transformation
— Functiontransformation(vi::AbstractVarInfo)
Return the AbstractTransformation
related to vi
.
DynamicPPL.unfix
— Methodunfix(context::AbstractContext, syms...)
Return context
but with syms
no longer fixed.
Note that this recursively traverses contexts, unfixing all along the way.
See also: fix
DynamicPPL.unfix
— Methodunfix(model::Model)
unfix(model::Model, variables...)
Return a Model
for which variables...
are not considered fixed. If no variables
are provided, then all variables currently considered fixed will no longer be.
This is essentially the inverse of fix
. This also means that it suffers from the same limitiations.
Note that currently we only support variables
to take on explicit values provided to fix
.
Examples
julia> using Distributions
julia> @model function demo()
m ~ Normal()
x ~ Normal(m, 1)
return (; m=m, x=x)
end
demo (generic function with 2 methods)
julia> fixed_model = fix(demo(), m = 1.0, x = 10.0);
julia> fixed_model()
(m = 1.0, x = 10.0)
julia> # By specifying the `VarName` to `unfix`.
model = unfix(fixed_model, @varname(m));
julia> (m, x) = model(); (m ≠ 1.0 && x == 10.0)
true
julia> # When `NamedTuple` is used as the underlying, you can also provide
# the symbol directly (though the `@varname` approach is preferable if
# if the variable is known at compile-time).
model = unfix(fixed_model, :m);
julia> (m, x) = model(); (m ≠ 1.0 && x == 10.0)
true
julia> # `unfix` multiple at once:
(m, x) = unfix(model, :m, :x)(); (m ≠ 1.0 && x ≠ 10.0)
true
julia> # `unfix` without any symbols will `unfix` all variables.
(m, x) = unfix(model)(); (m ≠ 1.0 && x ≠ 10.0)
true
julia> # Usage of `Val` to perform `unfix` at compile-time if possible
# is also supported.
model = unfix(fixed_model, Val{:m}());
julia> (m, x) = model(); (m ≠ 1.0 && x == 10.0)
true
Similarly when using a Dict
:
julia> fixed_model_dict = fix(demo(), @varname(m) => 1.0, @varname(x) => 10.0);
julia> fixed_model_dict()
(m = 1.0, x = 10.0)
julia> unfixed_model_dict = unfix(fixed_model_dict, @varname(m));
julia> (m, x) = unfixed_model_dict(); m ≠ 1.0 && x == 10.0
true
But, as mentioned, unfix
is only supported for variables explicitly provided to fix
earlier:
julia> @model function demo_mv(::Type{TV}=Float64) where {TV}
m = Vector{TV}(undef, 2)
m[1] ~ Normal()
m[2] ~ Normal()
return m
end
demo_mv (generic function with 4 methods)
julia> model = demo_mv();
julia> fixed_model = fix(model, @varname(m) => [1.0, 2.0]);
julia> fixed_model()
2-element Vector{Float64}:
1.0
2.0
julia> unfixed_model = unfix(fixed_model, @varname(m[1]));
julia> unfixed_model() # (×) `m[1]` is still fixed
2-element Vector{Float64}:
1.0
2.0
julia> # (✓) this works though
unfixed_model_2 = fix(unfixed_model, @varname(m[1]) => missing);
julia> m = unfixed_model_2(); (m[1] ≠ 1.0 && m[2] == 2.0)
true
DynamicPPL.unflatten
— Methodunflatten(vi::AbstractVarInfo[, context::AbstractContext], x::AbstractVector)
Return a new instance of vi
with the values of x
assigned to the variables.
If context
is provided, x
is assumed to be realizations only for variables not filtered out by context
.
DynamicPPL.unflatten
— Methodunflatten(original, x::AbstractVector)
Return instance of original
constructed from x
.
DynamicPPL.unset_flag!
— Methodunset_flag!(vi::VarInfo, vn::VarName, flag::String)
Set vn
's value for flag
to false
in vi
.
DynamicPPL.unwrap_right_left_vns
— Methodunwrap_right_left_vns(right, left, vns)
Return the unwrapped distributions on the right-hand side and values and variable names on the left-hand side of a .~
expression such as x .~ Normal()
.
This is used mainly to unwrap NamedDist
distributions and adjust the indices of the variables.
Example
julia> _, _, vns = DynamicPPL.unwrap_right_left_vns(MvNormal(ones(2), I), randn(2, 2), @varname(x)); vns[end]
x[:, 2]
julia> _, _, vns = DynamicPPL.unwrap_right_left_vns(Normal(), randn(1, 2), @varname(x)); vns[end]
x[1, 2]
julia> _, _, vns = DynamicPPL.unwrap_right_left_vns(Normal(), randn(1, 2), @varname(x[:])); vns[end]
x[:][1, 2]
julia> _, _, vns = DynamicPPL.unwrap_right_left_vns(Normal(), randn(3), @varname(x[1])); vns[end]
x[1][3]
DynamicPPL.unwrap_right_vn
— Methodunwrap_right_vn(right, vn)
Return the unwrapped distribution on the right-hand side and variable name on the left-hand side of a ~
expression such as x ~ Normal()
.
This is used mainly to unwrap NamedDist
distributions.
DynamicPPL.update_values!!
— Methodupdate_values!!(vi::AbstractVarInfo, vals::NamedTuple, vns)
Return instance similar to vi
but with vns
set to values from vals
.
DynamicPPL.updategid!
— Methodupdategid!(vi::VarInfo, vn::VarName, spl::Sampler)
Set vn
's gid
to Set([spl.selector])
, if vn
does not have a sampler selector linked and vn
's symbol is in the space of spl
.
DynamicPPL.use_threadsafe_eval
— Methoduse_threadsafe_eval(context::AbstractContext, varinfo::AbstractVarInfo)
Return true
if evaluation of a model using context
and varinfo
should wrap varinfo
in ThreadSafeVarInfo
, i.e. threadsafe evaluation, and false
otherwise.
DynamicPPL.value_iterator_from_chain
— Methodvalue_iterator_from_chain(model::Model, chain)
value_iterator_from_chain(varinfo::AbstractVarInfo, chain)
Return an iterator over the values in chain
for each variable in model
/varinfo
.
Example
julia> using MCMCChains, DynamicPPL, Distributions, StableRNGs
julia> rng = StableRNG(42);
julia> @model function demo_model(x)
s ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s))
for i in eachindex(x)
x[i] ~ Normal(m, sqrt(s))
end
return s, m
end
demo_model (generic function with 2 methods)
julia> model = demo_model([1.0, 2.0]);
julia> chain = Chains(rand(rng, 10, 2, 3), [:s, :m]);
julia> iter = value_iterator_from_chain(model, chain);
julia> first(iter)
OrderedDict{VarName, Any} with 2 entries:
s => 0.580515
m => 0.739328
julia> collect(iter)
10×3 Matrix{OrderedDict{VarName, Any}}:
OrderedDict(s=>0.580515, m=>0.739328) … OrderedDict(s=>0.186047, m=>0.402423)
OrderedDict(s=>0.191241, m=>0.627342) OrderedDict(s=>0.776277, m=>0.166342)
OrderedDict(s=>0.971133, m=>0.637584) OrderedDict(s=>0.651655, m=>0.712044)
OrderedDict(s=>0.74345, m=>0.110359) OrderedDict(s=>0.469214, m=>0.104502)
OrderedDict(s=>0.170969, m=>0.598514) OrderedDict(s=>0.853546, m=>0.185399)
OrderedDict(s=>0.704776, m=>0.322111) … OrderedDict(s=>0.638301, m=>0.853802)
OrderedDict(s=>0.441044, m=>0.162285) OrderedDict(s=>0.852959, m=>0.0956922)
OrderedDict(s=>0.803972, m=>0.643369) OrderedDict(s=>0.245049, m=>0.871985)
OrderedDict(s=>0.772384, m=>0.646323) OrderedDict(s=>0.906603, m=>0.385502)
OrderedDict(s=>0.70882, m=>0.253105) OrderedDict(s=>0.413222, m=>0.953288)
julia> # This can be used to `condition` a `Model`.
conditioned_model = model | first(iter);
julia> conditioned_model() # <= results in same values as the `first(iter)` above
(0.5805148626851955, 0.7393275279160691)
DynamicPPL.values_as
— Functionvalues_as(varinfo[, Type])
Return the values/realizations in varinfo
as Type
, if implemented.
If no Type
is provided, return values as stored in varinfo
.
Examples
SimpleVarInfo
with NamedTuple
:
julia> data = (x = 1.0, m = [2.0]);
julia> values_as(SimpleVarInfo(data))
(x = 1.0, m = [2.0])
julia> values_as(SimpleVarInfo(data), NamedTuple)
(x = 1.0, m = [2.0])
julia> values_as(SimpleVarInfo(data), OrderedDict)
OrderedDict{VarName{sym, typeof(identity)} where sym, Any} with 2 entries:
x => 1.0
m => [2.0]
julia> values_as(SimpleVarInfo(data), Vector)
2-element Vector{Float64}:
1.0
2.0
SimpleVarInfo
with OrderedDict
:
julia> data = OrderedDict{Any,Any}(@varname(x) => 1.0, @varname(m) => [2.0]);
julia> values_as(SimpleVarInfo(data))
OrderedDict{Any, Any} with 2 entries:
x => 1.0
m => [2.0]
julia> values_as(SimpleVarInfo(data), NamedTuple)
(x = 1.0, m = [2.0])
julia> values_as(SimpleVarInfo(data), OrderedDict)
OrderedDict{Any, Any} with 2 entries:
x => 1.0
m => [2.0]
julia> values_as(SimpleVarInfo(data), Vector)
2-element Vector{Float64}:
1.0
2.0
TypedVarInfo
:
julia> # Just use an example model to construct the `VarInfo` because we're lazy.
vi = VarInfo(DynamicPPL.TestUtils.demo_assume_dot_observe());
julia> vi[@varname(s)] = 1.0; vi[@varname(m)] = 2.0;
julia> # For the sake of brevity, let's just check the type.
md = values_as(vi); md.s isa DynamicPPL.Metadata
true
julia> values_as(vi, NamedTuple)
(s = 1.0, m = 2.0)
julia> values_as(vi, OrderedDict)
OrderedDict{VarName{sym, typeof(identity)} where sym, Float64} with 2 entries:
s => 1.0
m => 2.0
julia> values_as(vi, Vector)
2-element Vector{Float64}:
1.0
2.0
UntypedVarInfo
:
julia> # Just use an example model to construct the `VarInfo` because we're lazy.
vi = VarInfo(); DynamicPPL.TestUtils.demo_assume_dot_observe()(vi);
julia> vi[@varname(s)] = 1.0; vi[@varname(m)] = 2.0;
julia> # For the sake of brevity, let's just check the type.
values_as(vi) isa DynamicPPL.Metadata
true
julia> values_as(vi, NamedTuple)
(s = 1.0, m = 2.0)
julia> values_as(vi, OrderedDict)
OrderedDict{VarName{sym, typeof(identity)} where sym, Float64} with 2 entries:
s => 1.0
m => 2.0
julia> values_as(vi, Vector)
2-element Vector{Real}:
1.0
2.0
DynamicPPL.values_as_in_model
— Functionvalues_as_in_model(model::Model[, varinfo::AbstractVarInfo, context::AbstractContext])
values_as_in_model(rng::Random.AbstractRNG, model::Model[, varinfo::AbstractVarInfo, context::AbstractContext])
Get the values of varinfo
as they would be seen in the model.
If no varinfo
is provided, then this is effectively the same as Base.rand(rng::Random.AbstractRNG, model::Model)
.
More specifically, this method attempts to extract the realization as seen in the model. For example, x[1] ~ truncated(Normal(); lower=0)
will result in a realization compatible with truncated(Normal(); lower=0)
regardless of whether varinfo
is working in unconstrained space.
Hence this method is a "safe" way of obtaining realizations in constrained space at the cost of additional model evaluations.
Arguments
model::Model
: model to extract realizations from.varinfo::AbstractVarInfo
: variable information to use for the extraction.context::AbstractContext
: context to use for the extraction. Ifrng
is specified, thencontext
will be wrapped in aSamplingContext
with the providedrng
.
Examples
When VarInfo
fails
The following demonstrates a common pitfall when working with VarInfo
and constrained variables.
julia> using Distributions, StableRNGs
julia> rng = StableRNG(42);
julia> @model function model_changing_support()
x ~ Bernoulli(0.5)
y ~ x == 1 ? Uniform(0, 1) : Uniform(11, 12)
end;
julia> model = model_changing_support();
julia> # Construct initial type-stable `VarInfo`.
varinfo = VarInfo(rng, model);
julia> # Link it so it works in unconstrained space.
varinfo_linked = DynamicPPL.link(varinfo, model);
julia> # Perform computations in unconstrained space, e.g. changing the values of `θ`.
# Flip `x` so we hit the other support of `y`.
θ = [!varinfo[@varname(x)], rand(rng)];
julia> # Update the `VarInfo` with the new values.
varinfo_linked = DynamicPPL.unflatten(varinfo_linked, θ);
julia> # Determine the expected support of `y`.
lb, ub = θ[1] == 1 ? (0, 1) : (11, 12)
(0, 1)
julia> # Approach 1: Convert back to constrained space using `invlink` and extract.
varinfo_invlinked = DynamicPPL.invlink(varinfo_linked, model);
julia> # (×) Fails! Because `VarInfo` _saves_ the original distributions
# used in the very first model evaluation, hence the support of `y`
# is not updated even though `x` has changed.
lb ≤ varinfo_invlinked[@varname(y)] ≤ ub
false
julia> # Approach 2: Extract realizations using `values_as_in_model`.
# (✓) `values_as_in_model` will re-run the model and extract
# the correct realization of `y` given the new values of `x`.
lb ≤ values_as_in_model(model, varinfo_linked)[@varname(y)] ≤ ub
true
DynamicPPL.values_from_chain!
— Methodvalues_from_chain!(model::Model, chain, chain_idx, iteration_idx, out)
values_from_chain!(varinfo::VarInfo, chain, chain_idx, iteration_idx, out)
Mutate out
to map each variable name in model
/varinfo
to its value in chain
at chain_idx
and iteration_idx
.
DynamicPPL.values_from_chain
— Methodvalues_from_chain(model::Model, chain, chain_idx, iteration_idx)
values_from_chain(varinfo::VarInfo, chain, chain_idx, iteration_idx)
Return a dictionary mapping each variable name in model
/varinfo
to its value in chain
at chain_idx
and iteration_idx
.
DynamicPPL.varname_and_value_leaves
— Methodvarname_and_value_leaves(vn::VarName, val)
Return an iterator over all varname-value pairs that are represented by vn
on val
.
Examples
julia> using DynamicPPL: varname_and_value_leaves
julia> foreach(println, varname_and_value_leaves(@varname(x), 1:2))
(x[1], 1)
(x[2], 2)
julia> foreach(println, varname_and_value_leaves(@varname(x[1:2]), 1:2))
(x[1:2][1], 1)
(x[1:2][2], 2)
julia> x = (y = 1, z = [[2.0], [3.0]]);
julia> foreach(println, varname_and_value_leaves(@varname(x), x))
(x.y, 1)
(x.z[1][1], 2.0)
(x.z[2][1], 3.0)
There are also some special handling for certain types:
julia> using LinearAlgebra
julia> x = reshape(1:4, 2, 2);
julia> # `LowerTriangular`
foreach(println, varname_and_value_leaves(@varname(x), LowerTriangular(x)))
(x[1, 1], 1)
(x[2, 1], 2)
(x[2, 2], 4)
julia> # `UpperTriangular`
foreach(println, varname_and_value_leaves(@varname(x), UpperTriangular(x)))
(x[1, 1], 1)
(x[1, 2], 3)
(x[2, 2], 4)
julia> # `Cholesky` with lower-triangular
foreach(println, varname_and_value_leaves(@varname(x), Cholesky([1.0 0.0; 0.0 1.0], 'L', 0)))
(x.L[1, 1], 1.0)
(x.L[2, 1], 0.0)
(x.L[2, 2], 1.0)
julia> # `Cholesky` with upper-triangular
foreach(println, varname_and_value_leaves(@varname(x), Cholesky([1.0 0.0; 0.0 1.0], 'U', 0)))
(x.U[1, 1], 1.0)
(x.U[1, 2], 0.0)
(x.U[2, 2], 1.0)
DynamicPPL.varname_in_chain!
— Methodvarname_in_chain!(model::Model, vn, chain, chain_idx, iteration_idx, out)
varname_in_chain!(varinfo::VarInfo, vn, chain, chain_idx, iteration_idx, out)
Return a dictionary mapping the varname vn
to true
if vn
is in chain
at chain_idx
and iteration_idx
.
If chain_idx
and iteration_idx
are not provided, then they default to 1
.
This differs from varname_in_chain
in that it returns a dictionary rather than a single boolean. This can be quite useful for debugging purposes.
DynamicPPL.varname_in_chain
— Methodvarname_in_chain(model::Model, vn, chain, chain_idx, iteration_idx)
varname_in_chain(varinfo::VarInfo, vn, chain, chain_idx, iteration_idx)
Return true
if vn
is in chain
at chain_idx
and iteration_idx
.
DynamicPPL.varname_leaves
— Methodvarname_leaves(vn::VarName, val)
Return an iterator over all varnames that are represented by vn
on val
.
Examples
julia> using DynamicPPL: varname_leaves
julia> foreach(println, varname_leaves(@varname(x), rand(2)))
x[1]
x[2]
julia> foreach(println, varname_leaves(@varname(x[1:2]), rand(2)))
x[1:2][1]
x[1:2][2]
julia> x = (y = 1, z = [[2.0], [3.0]]);
julia> foreach(println, varname_leaves(@varname(x), x))
x.y
x.z[1][1]
x.z[2][1]
DynamicPPL.varnames
— Functionvarnames(chains::AbstractChains)
Return an iterator over the varnames present in chains
.
Whether this method is implemented for chains
is indicated by supports_varname_indexing
.
DynamicPPL.varnames_in_chain!
— Methodvarnames_in_chain!(model::Model, chain, out)
varnames_in_chain!(varinfo::VarInfo, chain, out)
Return out
with true
for all variable names in model
that are in chain
.
DynamicPPL.varnames_in_chain
— Methodvarnames_in_chain(model:::Model, chain)
varnames_in_chain(varinfo::VarInfo, chain)
Return true
if all variable names in model
/varinfo
are in chain
.
DynamicPPL.with_logabsdet_jacobian_and_reconstruct
— Methodwith_logabsdet_jacobian_and_reconstruct([f, ]dist, x)
Like Bijectors.with_logabsdet_jacobian(f, x)
, but also ensures the resulting value is reconstructed to the correct type and shape according to dist
.
StatsAPI.loglikelihood
— Methodloglikelihood(model::Model, chain::AbstractMCMC.AbstractChains)
Return an array of log likelihoods evaluated at each sample in an MCMC chain
.
Examples
julia> using MCMCChains, Distributions
julia> @model function demo_model(x)
s ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s))
for i in eachindex(x)
x[i] ~ Normal(m, sqrt(s))
end
end;
julia> # construct a chain of samples using MCMCChains
chain = Chains(rand(10, 2, 3), [:s, :m]);
julia> loglikelihood(demo_model([1., 2.]), chain);
StatsAPI.loglikelihood
— MethodStatsAPI.loglikelihood
— Methodloglikelihood(model::Model, θ)
Return the log likelihood of variables θ
for the probabilistic model
.
See also logjoint
and logprior
.
Examples
julia> @model function demo(x)
m ~ Normal()
for i in eachindex(x)
x[i] ~ Normal(m, 1.0)
end
end
demo (generic function with 2 methods)
julia> # Using a `NamedTuple`.
loglikelihood(demo([1.0]), (m = 100.0, ))
-4901.418938533205
julia> # Using a `OrderedDict`.
loglikelihood(demo([1.0]), OrderedDict(@varname(m) => 100.0))
-4901.418938533205
julia> # Truth.
logpdf(Normal(100.0, 1.0), 1.0)
-4901.418938533205
DynamicPPL.@addlogprob!
— Macro@addlogprob!(ex)
Add the result of the evaluation of ex
to the joint log probability.
Examples
This macro allows you to include arbitrary terms in the likelihood
julia> myloglikelihood(x, μ) = loglikelihood(Normal(μ, 1), x);
julia> @model function demo(x)
μ ~ Normal()
@addlogprob! myloglikelihood(x, μ)
end;
julia> x = [1.3, -2.1];
julia> loglikelihood(demo(x), (μ=0.2,)) ≈ myloglikelihood(x, 0.2)
true
and to reject samples:
julia> @model function demo(x)
m ~ MvNormal(zero(x), I)
if dot(m, x) < 0
@addlogprob! -Inf
# Exit the model evaluation early
return
end
x ~ MvNormal(m, I)
return
end;
julia> logjoint(demo([-2.1]), (m=[0.2],)) == -Inf
true
The @addlogprob!
macro increases the accumulated log probability regardless of the evaluation context, i.e., regardless of whether you evaluate the log prior, the log likelihood or the log joint density. If you would like to avoid this behaviour you should check the evaluation context. It can be accessed with the internal variable __context__
. For instance, in the following example the log density is not accumulated when only the log prior is computed:
julia> myloglikelihood(x, μ) = loglikelihood(Normal(μ, 1), x);
julia> @model function demo(x)
μ ~ Normal()
if DynamicPPL.leafcontext(__context__) !== PriorContext()
@addlogprob! myloglikelihood(x, μ)
end
end;
julia> x = [1.3, -2.1];
julia> logprior(demo(x), (μ=0.2,)) ≈ logpdf(Normal(), 0.2)
true
julia> loglikelihood(demo(x), (μ=0.2,)) ≈ myloglikelihood(x, 0.2)
true
DynamicPPL.@model
— Macro@model(expr[, warn = false])
Macro to specify a probabilistic model.
If warn
is true
, a warning is displayed if internal variable names are used in the model definition.
Examples
Model definition:
@model function model(x, y = 42)
...
end
To generate a Model
, call model(xvalue)
or model(xvalue, yvalue)
.
DynamicPPL.@submodel
— Macro@submodel prefix=... model
@submodel prefix=... ... = model
Run a Turing model
nested inside of a Turing model and add "prefix
." as a prefix to all random variables inside of the model
.
Valid expressions for prefix=...
are:
prefix=false
: no prefix is used.prefix=true
: attempt to automatically determine the prefix from the left-hand side... = model
by first converting into aVarName
, and then callingSymbol
on this.prefix=expression
: results in the prefixSymbol(expression)
.
The prefix makes it possible to run the same Turing model multiple times while keeping track of all random variables correctly.
Examples
Example models
julia> @model function demo1(x)
x ~ Normal()
return 1 + abs(x)
end;
julia> @model function demo2(x, y, z)
@submodel prefix="sub1" a = demo1(x)
@submodel prefix="sub2" b = demo1(y)
return z ~ Uniform(-a, b)
end;
When we sample from the model demo2(missing, missing, 0.4)
random variables sub1.x
and sub2.x
will be sampled:
julia> vi = VarInfo(demo2(missing, missing, 0.4));
julia> @varname(var"sub1.x") in keys(vi)
true
julia> @varname(var"sub2.x") in keys(vi)
true
Variables a
and b
are not tracked since they can be computed from the random variables sub1.x
and sub2.x
that were tracked when running demo1
:
julia> @varname(a) in keys(vi)
false
julia> @varname(b) in keys(vi)
false
We can check that the log joint probability of the model accumulated in vi
is correct:
julia> sub1_x = vi[@varname(var"sub1.x")];
julia> sub2_x = vi[@varname(var"sub2.x")];
julia> logprior = logpdf(Normal(), sub1_x) + logpdf(Normal(), sub2_x);
julia> loglikelihood = logpdf(Uniform(-1 - abs(sub1_x), 1 + abs(sub2_x)), 0.4);
julia> getlogp(vi) ≈ logprior + loglikelihood
true
Different ways of setting the prefix
julia> @model inner() = x ~ Normal()
inner (generic function with 2 methods)
julia> # When `prefix` is unspecified, no prefix is used.
@model submodel_noprefix() = @submodel a = inner()
submodel_noprefix (generic function with 2 methods)
julia> @varname(x) in keys(VarInfo(submodel_noprefix()))
true
julia> # Explicitely don't use any prefix.
@model submodel_prefix_false() = @submodel prefix=false a = inner()
submodel_prefix_false (generic function with 2 methods)
julia> @varname(x) in keys(VarInfo(submodel_prefix_false()))
true
julia> # Automatically determined from `a`.
@model submodel_prefix_true() = @submodel prefix=true a = inner()
submodel_prefix_true (generic function with 2 methods)
julia> @varname(var"a.x") in keys(VarInfo(submodel_prefix_true()))
true
julia> # Using a static string.
@model submodel_prefix_string() = @submodel prefix="my prefix" a = inner()
submodel_prefix_string (generic function with 2 methods)
julia> @varname(var"my prefix.x") in keys(VarInfo(submodel_prefix_string()))
true
julia> # Using string interpolation.
@model submodel_prefix_interpolation() = @submodel prefix="$(nameof(inner()))" a = inner()
submodel_prefix_interpolation (generic function with 2 methods)
julia> @varname(var"inner.x") in keys(VarInfo(submodel_prefix_interpolation()))
true
julia> # Or using some arbitrary expression.
@model submodel_prefix_expr() = @submodel prefix=1 + 2 a = inner()
submodel_prefix_expr (generic function with 2 methods)
julia> @varname(var"3.x") in keys(VarInfo(submodel_prefix_expr()))
true
julia> # (×) Automatic prefixing without a left-hand side expression does not work!
@model submodel_prefix_error() = @submodel prefix=true inner()
ERROR: LoadError: cannot automatically prefix with no left-hand side
[...]
Notes
- The choice
prefix=expression
means that the prefixing will incur a runtime cost. This is also the case forprefix=true
, depending on whether the expression on the the right-hand side of... = model
requires runtime-information or not, e.g.x = model
will result in the static prefixx
, whilex[i] = model
will be resolved at runtime.
DynamicPPL.@submodel
— Macro@submodel model
@submodel ... = model
Run a Turing model
nested inside of a Turing model.
Examples
julia> @model function demo1(x)
x ~ Normal()
return 1 + abs(x)
end;
julia> @model function demo2(x, y)
@submodel a = demo1(x)
return y ~ Uniform(0, a)
end;
When we sample from the model demo2(missing, 0.4)
random variable x
will be sampled:
julia> vi = VarInfo(demo2(missing, 0.4));
julia> @varname(x) in keys(vi)
true
Variable a
is not tracked since it can be computed from the random variable x
that was tracked when running demo1
:
julia> @varname(a) in keys(vi)
false
We can check that the log joint probability of the model accumulated in vi
is correct:
julia> x = vi[@varname(x)];
julia> getlogp(vi) ≈ logpdf(Normal(), x) + logpdf(Uniform(0, 1 + abs(x)), 0.4)
true
DynamicPPL.TestUtils.DEMO_MODELS
— ConstantA collection of models corresponding to the posterior distribution defined by the generative process
s ~ InverseGamma(2, 3)
m ~ Normal(0, √s)
1.5 ~ Normal(m, √s)
2.0 ~ Normal(m, √s)
or by
s[1] ~ InverseGamma(2, 3)
s[2] ~ InverseGamma(2, 3)
m[1] ~ Normal(0, √s)
m[2] ~ Normal(0, √s)
1.5 ~ Normal(m[1], √s[1])
2.0 ~ Normal(m[2], √s[2])
These are examples of a Normal-InverseGamma conjugate prior with Normal likelihood, for which the posterior is known in closed form.
In particular, for the univariate model (the former one):
mean(s) == 49 / 24
mean(m) == 7 / 6
And for the multivariate one (the latter one):
mean(s[1]) == 19 / 8
mean(m[1]) == 3 / 4
mean(s[2]) == 8 / 3
mean(m[2]) == 1
DynamicPPL.TestUtils.demo_dynamic_constraint
— Methoddemo_dynamic_constraint()
A model with variables m
and x
with x
having support depending on m
.
DynamicPPL.TestUtils.demo_lkjchol
— Functiondemo_lkjchol(d=2)
A model with a single variable x
with support on the Cholesky factor of a LKJ distribution.
Model
x ~ LKJCholesky(d, 1.0)
DynamicPPL.TestUtils.demo_one_variable_multiple_constraints
— Methoddemo_one_variable_multiple_constraints()
A model with a single multivariate x
whose components have multiple different constraints.
Model
x[1] ~ Normal()
x[2] ~ InverseGamma(2, 3)
x[3] ~ truncated(Normal(), -5, 20)
x[4:5] ~ Dirichlet([1.0, 2.0])
DynamicPPL.TestUtils.demo_static_transformation
— Methoddemo_static_transformation()
Simple model for which default_transformation
returns a StaticTransformation
.
DynamicPPL.TestUtils.logjoint_true
— Methodlogjoint_true(model, args...)
Return the logjoint
of model
for args
.
Defaults to logprior_true(model, args...) + loglikelihood_true(model, args..)
.
This should generally be implemented by hand for every specific model
so that the returned value can be used as a ground-truth for testing things like:
- Validity of evaluation of
model
using a particular implementation ofAbstractVarInfo
. - Validity of a sampler when combined with DynamicPPL by running the sampler twice: once targeting ground-truth functions, e.g.
logjoint_true
, and once targetingmodel
.
And more.
See also: logprior_true
, loglikelihood_true
.
DynamicPPL.TestUtils.logjoint_true_with_logabsdet_jacobian
— Methodlogjoint_true_with_logabsdet_jacobian(model::Model, args...)
Return a tuple (args_unconstrained, logjoint)
of model
for args
.
Unlike logjoint_true
, the returned logjoint computation includes the log-absdet-jacobian adjustment, thus computing logjoint for the unconstrained variables.
Note that args
are assumed be in the support of model
, while args_unconstrained
will be unconstrained.
This should generally not be implemented directly, instead one should implement logprior_true_with_logabsdet_jacobian
for a given model
.
See also: logjoint_true
, logprior_true_with_logabsdet_jacobian
.
DynamicPPL.TestUtils.loglikelihood_true
— Functionloglikelihood_true(model, args...)
Return the loglikelihood
of model
for args
.
This should generally be implemented by hand for every specific model
.
See also: logjoint_true
, logprior_true
.
DynamicPPL.TestUtils.logprior_true
— Functionlogprior_true(model, args...)
Return the logprior
of model
for args
.
This should generally be implemented by hand for every specific model
.
See also: logjoint_true
, loglikelihood_true
.
DynamicPPL.TestUtils.logprior_true_with_logabsdet_jacobian
— Functionlogprior_true_with_logabsdet_jacobian(model::Model, args...)
Return a tuple (args_unconstrained, logprior_unconstrained)
of model
for args...
.
Unlike logprior_true
, the returned logprior computation includes the log-absdet-jacobian adjustment, thus computing logprior for the unconstrained variables.
Note that args
are assumed be in the support of model
, while args_unconstrained
will be unconstrained.
See also: logprior_true
.
DynamicPPL.TestUtils.marginal_mean_of_samples
— Methodmarginal_mean_of_samples(chain, varname)
Return the mean of variable represented by varname
in chain
.
DynamicPPL.TestUtils.posterior_mean
— Functionposterior_mean(model::Model)
Return a NamedTuple
compatible with varnames(model)
where the values represent the posterior mean under model
.
"Compatible" means that a varname
from varnames(model)
can be used to extract the corresponding value using get
, e.g. get(posterior_mean(model), varname)
.
DynamicPPL.TestUtils.rand_prior_true
— Methodrand_prior_true([rng::AbstractRNG, ]model::DynamicPPL.Model)
Return a NamedTuple
of realizations from the prior of model
compatible with varnames(model)
.
DynamicPPL.TestUtils.setup_varinfos
— Methodsetup_varinfos(model::Model, example_values::NamedTuple, varnames; include_threadsafe::Bool=false)
Return a tuple of instances for different implementations of AbstractVarInfo
with each vi
, supposedly, satisfying vi[vn] == get(example_values, vn)
for vn
in varnames
.
If include_threadsafe
is true
, then the returned tuple will also include thread-safe versions of the varinfo instances.
DynamicPPL.TestUtils.test_context_interface
— Methodtest_context_interface(context)
Test that context
implements the AbstractContext
interface.
DynamicPPL.TestUtils.test_sampler
— Methodtest_sampler(models, sampler, args...; kwargs...)
Test that sampler
produces correct marginal posterior means on each model in models
.
In short, this method iterates through models
, calls AbstractMCMC.sample
on the model
and sampler
to produce a chain
, and then checks marginal_mean_of_samples(chain, vn)
for every (leaf) varname vn
against the corresponding value returned by posterior_mean
for each model.
To change how comparison is done for a particular chain
type, one can overload marginal_mean_of_samples
for the corresponding type.
Arguments
models
: A collection of instaces ofDynamicPPL.Model
to test on.sampler
: TheAbstractMCMC.AbstractSampler
to test.args...
: Arguments forwarded tosample
.
Keyword arguments
varnames_filter
: A filter to apply tovarnames(model)
, allowing comparison for only a subset of the varnames.atol=1e-1
: Absolute tolerance used in@test
.rtol=1e-3
: Relative tolerance used in@test
.kwargs...
: Keyword arguments forwarded tosample
.
DynamicPPL.TestUtils.test_sampler_continuous
— Methodtest_sampler_continuous(sampler, args...; kwargs...)
Test that sampler
produces the correct marginal posterior means on all models in demo_models
.
As of right now, this is just an alias for test_sampler_on_demo_models
.
DynamicPPL.TestUtils.test_sampler_on_demo_models
— Methodtest_sampler_on_demo_models(meanfunction, sampler, args...; kwargs...)
Test sampler
on every model in DEMO_MODELS
.
This is just a proxy for test_sampler(meanfunction, DEMO_MODELS, sampler, args...; kwargs...)
.
DynamicPPL.TestUtils.test_values
— Methodtest_values(vi::AbstractVarInfo, vals::NamedTuple, vns)
Test that vi[vn]
corresponds to the correct value in vals
for every vn
in vns
.
DynamicPPL.TestUtils.varnames
— Methodvarnames(model::Model)
Return a collection of VarName
as they are expected to appear in the model.
Even though it is recommended to implement this by hand for a particular Model
, a default implementation using SimpleVarInfo{<:Dict}
is provided.
DynamicPPL.DebugUtils.DebugContext
— TypeDebugContext <: AbstractContext
A context used for checking validity of a model.
Fields
model
: model that is being runcontext
: context used for running the modelvarnames_seen
: mapping from varnames to the number of times they have been seenstatements
: tilde statements that have been executederror_on_failure
: whether to throw an error if we encounter warningsrecord_statements
: whether to record the tilde statementsrecord_varinfo
: whether to record the varinfo in every tilde statement
DynamicPPL.DebugUtils.check_model
— Methodcheck_model([rng, ]model::Model; kwargs...)
Check that model
is valid, warning about any potential issues.
See check_model_and_trace
for more details on supported keword arguments and details of which types of checks are performed.
Returns
issuccess::Bool
: Whether the model check succeeded.
DynamicPPL.DebugUtils.check_model_and_trace
— Methodcheck_model_and_trace([rng, ]model::Model; kwargs...)
Check that model
is valid, warning about any potential issues.
This will check the model for the following issues:
- Repeated usage of the same varname in a model.
- Incorrectly treating a variable as random rather than fixed, and vice versa.
Arguments
rng::Random.AbstractRNG
: The random number generator to use when evaluating the model.model::Model
: The model to check.
Keyword Arguments
varinfo::VarInfo
: The varinfo to use when evaluating the model. Default:VarInfo(model)
.context::AbstractContext
: The context to use when evaluating the model. Default:DefaultContext
.error_on_failure::Bool
: Whether to throw an error if the model check fails. Default:false
.
Returns
issuccess::Bool
: Whether the model check succeeded.trace::Vector{Stmt}
: The trace of statements executed during the model check.
Examples
Correct model
julia> using StableRNGs
julia> rng = StableRNG(42);
julia> @model demo_correct() = x ~ Normal()
demo_correct (generic function with 2 methods)
julia> issuccess, trace = check_model_and_trace(rng, demo_correct());
julia> issuccess
true
julia> print(trace)
assume: x ~ Normal{Float64}(μ=0.0, σ=1.0) ⟼ -0.670252 (logprob = -1.14356)
julia> issuccess, trace = check_model_and_trace(rng, demo_correct() | (x = 1.0,));
julia> issuccess
true
julia> print(trace)
observe: 1.0 ~ Normal{Float64}(μ=0.0, σ=1.0) (logprob = -1.41894)
Incorrect model
julia> @model function demo_incorrect()
# (×) Sampling `x` twice will lead to incorrect log-probabilities!
x ~ Normal()
x ~ Exponential()
end
demo_incorrect (generic function with 2 methods)
julia> issuccess, trace = check_model_and_trace(rng, demo_incorrect(); error_on_failure=true);
ERROR: varname x used multiple times in model
DynamicPPL.DebugUtils.has_static_constraints
— Methodhas_static_constraints([rng, ]model::Model; num_evals=5, kwargs...)
Return true
if the model has static constraints, false
otherwise.
Note that this is a heuristic check based on sampling from the model multiple times and checking if the model is consistent across runs.
Arguments
rng::Random.AbstractRNG
: The random number generator to use when evaluating the model.model::Model
: The model to check.
Keyword Arguments
num_evals::Int
: The number of evaluations to perform. Default:5
.kwargs...
: Additional keyword arguments to pass tocheck_model_and_trace
.
DynamicPPL.DebugUtils.varnames_in_trace
— Methodvarnames_in_trace(trace)
Return all the varnames present in the trace.