LaTeX symbols in REPL

LaTeX symbols in REPL

short nameunicode
\0/3↉
\1/⅟
\1/10⅒
\1/2Â―
\1/3⅓
\1/4ž
\1/5⅕
\1/6⅙
\1/7⅐
\1/8⅛
\1/9⅑
\2/3⅔
\2/5⅖
\3/4Âū
\3/5⅗
\3/8⅜
\4/5⅘
\5/6⅚
\5/8⅝
\7/8⅞
\AAÅ
\AEÆ
\AlphaΑ
\AndâГ
\AngleâĶœ
\Angstromâ„Ŧ
\BetaΒ
\BotâŦŦ
\Bumpeq≎
\Cap⋒
\ChiΧ
\Colon∷
\ColoneqâĐī
\Cup⋓
\DDownarrow⟱
\DHÐ
\DJĐ
\DashvâŦĪ
\DdownarrowâĪ‹
\DeltaΔ
\DigammaϜ
\Doteq≑
\DownArrowBarâĪ“
\DownArrowUpArrowâ‡ĩ
\DownLeftRightVectorâĨ
\DownLeftTeeVectorâĨž
\DownLeftVectorBarâĨ–
\DownRightTeeVectorâĨŸ
\DownRightVectorBarâĨ—
\Downarrow⇓
\ElOrâЖ
\ElroangâĶ†
\EpsilonΕ
\EqualâĐĩ
\Equivâ‰Ģ
\EtaΗ
\Finvâ„ē
\Game⅁
\GammaΓ
\HĖ‹
\Imℑ
\IotaΙ
\KappaΚ
\KoppaϞ
\LŁ
\LLeftarrow⭅
\LambdaΛ
\Lap⧊
\Ldshâ†ē
\LeftDownTeeVectorâĨĄ
\LeftDownVectorBarâĨ™
\LeftRightVectorâĨŽ
\LeftTeeVectorâĨš
\LeftTriangleBar⧏
\LeftUpDownVectorâĨ‘
\LeftUpTeeVectorâĨ 
\LeftUpVectorBarâĨ˜
\LeftVectorBarâĨ’
\Leftarrow⇐
\Leftrightarrow⇔
\Lleftarrow⇚
\LongleftarrowâŸļ
\Longleftrightarrow⟹
\LongmapsfromâŸ―
\LongmapstoâŸū
\LongrightarrowâŸđ
\Lsh↰
\MapsfromâĪ†
\MapstoâĪ‡
\NGŊ
\Nearrow⇗
\NestedGreaterGreaterâŠĒ
\NestedLessLess⊥
\NotGreaterGreater"â‰ŦĖļ"
\NotLeftTriangleBar"⧏Ėļ"
\NotLessLess"≩Ėļ"
\NotNestedGreaterGreater"âŠĒĖļ"
\NotNestedLessLess"⊥Ėļ"
\NotRightTriangleBar"⧐Ėļ"
\NotSquareSubset"⊏Ėļ"
\NotSquareSuperset"⊐Ėļ"
\Nwarrow⇖
\OØ
\OEŒ
\OmegaÎĐ
\OrâД
\OtimesâĻ·
\PÂķ
\PhiÎĶ
\PiΠ
\PrecâŠŧ
\PropertyLine⅊
\PsiÎĻ
\QED∎
\RRightarrow⭆
\Rdshâ†ģ
\Reℜ
\ReverseUpEquilibriumâĨŊ
\RhoÎĄ
\RightDownTeeVectorâĨ
\RightDownVectorBarâĨ•
\RightTeeVectorâĨ›
\RightTriangleBar⧐
\RightUpDownVectorâĨ
\RightUpTeeVectorâĨœ
\RightUpVectorBarâĨ”
\RightVectorBarâĨ“
\Rightarrow⇒
\RlarrâĨ‚
\RoundImpliesâĨ°
\Rrightarrow⇛
\Rsh↱
\RuleDelayedâ§ī
\S§
\SampiÏ 
\Searrow⇘
\SigmaÎĢ
\SqcapâЎ
\SqcupâЏ
\StigmaϚ
\Subset⋐
\Succ⊞
\Supset⋑
\Swarrow⇙
\THÞ
\TauÎĪ
\ThetaΘ
\TimesâĻŊ
\TopâŦŠ
\UUparrow⟰
\UpArrowBarâĪ’
\UpEquilibriumâĨŪ
\Uparrow⇑
\Updownarrow⇕
\UpsilonÎĨ
\UuparrowâĪŠ
\VDashâŠŦ
\VdashâŠĐ
\Vert‖
\Vvdash⊩
\VvertâĶ€
\XiΞ
\Yup⅄
\ZbarÆĩ
\ZetaΖ
\^!ꜝ
\^(â―
\^)âū
\^+⁚
\^-âŧ
\^0⁰
\^1Âđ
\^2Âē
\^3Âģ
\^4âī
\^5âĩ
\^6âķ
\^7⁷
\^8âļ
\^9âđ
\^=⁞
\^AáīŽ
\^BáīŪ
\^Dáī°
\^Eáīą
\^Gáīģ
\^Háīī
\^Iáīĩ
\^Jáīķ
\^Káī·
\^Láīļ
\^Máīđ
\^Náīš
\^Oáīž
\^Páīū
\^Ráīŋ
\^Táĩ€
\^Uáĩ
\^Vâą―
\^Wáĩ‚
\^aáĩƒ
\^alphaáĩ…
\^báĩ‡
\^betaáĩ
\^cáķœ
\^chiáĩĄ
\^dáĩˆ
\^deltaáĩŸ
\^downarrowꜜ
\^eáĩ‰
\^epsilonáĩ‹
\^fáķ 
\^gáĩ
\^gammaáĩž
\^hĘ°
\^i⁹
\^iotaáķĨ
\^jĘē
\^káĩ
\^lËĄ
\^ltphiáķē
\^máĩ
\^nâŋ
\^oáĩ’
\^páĩ–
\^phiáĩ 
\^rĘģ
\^sËĒ
\^táĩ—
\^thetaáķŋ
\^uáĩ˜
\^uparrowꜛ
\^váĩ›
\^wĘ·
\^xËĢ
\^yĘļ
\^záķŧ
\_(₍
\_)₎
\_+₊
\_-₋
\_0₀
\_1₁
\_2₂
\_3₃
\_4₄
\_5₅
\_6₆
\_7₇
\_8₈
\_9₉
\_=₌
\_aₐ
\_betaáĩĶ
\_chiáĩŠ
\_eₑ
\_gammaáĩ§
\_hₕ
\_iáĩĒ
\_jâąž
\_kₖ
\_lₗ
\_mₘ
\_nₙ
\_oₒ
\_pₚ
\_phiáĩĐ
\_ráĩĢ
\_rhoáĩĻ
\_sₛ
\_schwaₔ
\_tₜ
\_uáĩĪ
\_váĩĨ
\_xₓ
\aaÃĨ
\accurrentâĶ
\acidfreeâ™ū
\acuteĖ
\adots⋰
\aeÃĶ
\alephâ„ĩ
\allequal≌
\alphaÎą
\amalgâĻŋ
\angdnrâĶŸ
\angle∠
\anglesâĶž
\angleubarâĶĪ
\annuity⃧
\approx≈
\approxeq≊
\approxeqqâĐ°
\approxnotequal≆
\aquarius♒
\arceq≘
\aries♈
\ast∗
\asteqâĐŪ
\asteraccent⃰
\astrosun☉
\asymp≍
\awintâĻ‘
\backepsilonÏķ
\backppprime‷
\backpprimeâ€ķ
\backprimeâ€ĩ
\backsimâˆ―
\backsimeq⋍
\bagmemberâ‹ŋ
\barĖ„
\barcapâЃ
\barcupâЂ
\barleftarrowâ‡Ī
\barleftarrowrightarrowbarâ†đ
\barovernorthwestarrowâ†ļ
\barrightarrowdiamondâĪ 
\barveeâŠ―
\barwedge⊾
\bbAð”ļ
\bbBð”đ
\bbCℂ
\bbDð”ŧ
\bbE𝔞
\bbFð”―
\bbGð”ū
\bbGammaâ„ū
\bbHℍ
\bbI𝕀
\bbJ𝕁
\bbK𝕂
\bbL𝕃
\bbM𝕄
\bbNℕ
\bbO𝕆
\bbPℙ
\bbPiâ„ŋ
\bbQℚ
\bbRℝ
\bbS𝕊
\bbT𝕋
\bbU𝕌
\bbV𝕍
\bbW𝕎
\bbX𝕏
\bbY𝕐
\bbZâ„Ī
\bba𝕒
\bbb𝕓
\bbc𝕔
\bbd𝕕
\bbe𝕖
\bbeight𝟠
\bbf𝕗
\bbfive𝟝
\bbfour𝟜
\bbg𝕘
\bbgammaâ„―
\bbh𝕙
\bbi𝕚
\bbiDⅅ
\bbidⅆ
\bbieⅇ
\bbiiⅈ
\bbijⅉ
\bbj𝕛
\bbk𝕜
\bbl𝕝
\bbm𝕞
\bbn𝕟
\bbnineðŸĄ
\bbo𝕠
\bbone𝟙
\bbpð•Ą
\bbpiℾ
\bbqð•Ē
\bbrð•Ģ
\bbrktbrkâŽķ
\bbsð•Ī
\bbsemiâĻŸ
\bbseven𝟟
\bbsix𝟞
\bbsum⅀
\bbtð•Ĩ
\bbthree𝟛
\bbtwo𝟚
\bbuð•Ķ
\bbv𝕧
\bbwð•Ļ
\bbxð•Đ
\bby𝕊
\bbzð•Ŧ
\bbzero𝟘
\becauseâˆĩ
\benzenrâĢ
\betaÎē
\bethâ„ķ
\between≮
\bfA𝐀
\bfAlphaðšĻ
\bfB𝐁
\bfBetaðšĐ
\bfC𝐂
\bfChiðšū
\bfD𝐃
\bfDeltaðšŦ
\bfDigamma𝟊
\bfE𝐄
\bfEpsilon𝚎
\bfEtaðšŪ
\bfF𝐅
\bfG𝐆
\bfGamma𝚊
\bfH𝐇
\bfI𝐈
\bfIota𝚰
\bfJ𝐉
\bfK𝐊
\bfKappaðšą
\bfL𝐋
\bfLambdaðšē
\bfM𝐌
\bfMuðšģ
\bfN𝐍
\bfNuðšī
\bfO𝐎
\bfOmega𝛀
\bfOmicronðšķ
\bfP𝐏
\bfPhiðš―
\bfPi𝚷
\bfPsiðšŋ
\bfQ𝐐
\bfR𝐑
\bfRhoðšļ
\bfS𝐒
\bfSigma𝚚
\bfT𝐓
\bfTauðšŧ
\bfThetaðšŊ
\bfU𝐔
\bfUpsilon𝚞
\bfV𝐕
\bfW𝐖
\bfX𝐗
\bfXiðšĩ
\bfY𝐘
\bfZ𝐙
\bfZeta𝚭
\bfa𝐚
\bfalpha𝛂
\bfb𝐛
\bfbeta𝛃
\bfc𝐜
\bfchi𝛘
\bfd𝐝
\bfdelta𝛅
\bfdigamma𝟋
\bfe𝐞
\bfeight𝟖
\bfepsilon𝛜
\bfeta𝛈
\bff𝐟
\bffive𝟓
\bffour𝟒
\bfg𝐠
\bfgamma𝛄
\bfhðĄ
\bfiðĒ
\bfiota𝛊
\bfjðĢ
\bfkðĪ
\bfkappa𝛋
\bflðĨ
\bflambda𝛌
\bfmðĶ
\bfmu𝛍
\bfn𝐧
\bfnabla𝛁
\bfnine𝟗
\bfnu𝛎
\bfoðĻ
\bfomega𝛚
\bfomicron𝛐
\bfone𝟏
\bfpðĐ
\bfpartial𝛛
\bfphi𝛟
\bfpi𝛑
\bfpsi𝛙
\bfq𝐊
\bfrðŦ
\bfrakA𝕎
\bfrakB𝕭
\bfrakCð•Ū
\bfrakDð•Ŋ
\bfrakE𝕰
\bfrakFð•ą
\bfrakGð•ē
\bfrakHð•ģ
\bfrakIð•ī
\bfrakJð•ĩ
\bfrakKð•ķ
\bfrakL𝕷
\bfrakMð•ļ
\bfrakNð•đ
\bfrakO𝕚
\bfrakPð•ŧ
\bfrakQ𝕞
\bfrakRð•―
\bfrakSð•ū
\bfrakTð•ŋ
\bfrakU𝖀
\bfrakV𝖁
\bfrakW𝖂
\bfrakX𝖃
\bfrakY𝖄
\bfrakZ𝖅
\bfraka𝖆
\bfrakb𝖇
\bfrakc𝖈
\bfrakd𝖉
\bfrake𝖊
\bfrakf𝖋
\bfrakg𝖌
\bfrakh𝖍
\bfraki𝖎
\bfrakj𝖏
\bfrakk𝖐
\bfrakl𝖑
\bfrakm𝖒
\bfrakn𝖓
\bfrako𝖔
\bfrakp𝖕
\bfrakq𝖖
\bfrakr𝖗
\bfraks𝖘
\bfrakt𝖙
\bfraku𝖚
\bfrakv𝖛
\bfrakw𝖜
\bfrakx𝖝
\bfraky𝖞
\bfrakz𝖟
\bfrho𝛒
\bfs𝐎
\bfseven𝟕
\bfsigma𝛔
\bfsix𝟔
\bft𝐭
\bftau𝛕
\bftheta𝛉
\bfthree𝟑
\bftwo𝟐
\bfuðŪ
\bfupsilon𝛖
\bfvðŊ
\bfvarThetaðšđ
\bfvarepsilon𝛆
\bfvarkappa𝛞
\bfvarphi𝛗
\bfvarpið›Ą
\bfvarrho𝛠
\bfvarsigma𝛓
\bfvartheta𝛝
\bfw𝐰
\bfxðą
\bfxi𝛏
\bfyðē
\bfzðģ
\bfzero𝟎
\bfzeta𝛇
\biAð‘Ļ
\biAlpha𝜜
\biBð‘Đ
\biBeta𝜝
\biC𝑊
\biChiðœē
\biDð‘Ŧ
\biDelta𝜟
\biE𝑎
\biEpsilon𝜠
\biEtaðœĒ
\biF𝑭
\biGð‘Ū
\biGamma𝜞
\biHð‘Ŋ
\biI𝑰
\biIotaðœĪ
\biJð‘ą
\biKð‘ē
\biKappaðœĨ
\biLð‘ģ
\biLambdaðœĶ
\biMð‘ī
\biMu𝜧
\biNð‘ĩ
\biNuðœĻ
\biOð‘ķ
\biOmegaðœī
\biOmicron𝜊
\biP𝑷
\biPhiðœą
\biPiðœŦ
\biPsiðœģ
\biQð‘ļ
\biRð‘đ
\biRho𝜎
\biS𝑚
\biSigmaðœŪ
\biTð‘ŧ
\biTauðœŊ
\biThetaðœĢ
\biU𝑞
\biUpsilon𝜰
\biVð‘―
\biWð‘ū
\biXð‘ŋ
\biXiðœĐ
\biY𝒀
\biZ𝒁
\biZetaðœĄ
\bia𝒂
\bialphaðœķ
\bib𝒃
\bibeta𝜷
\bic𝒄
\bichi𝝌
\bid𝒅
\bideltaðœđ
\bie𝒆
\biepsilon𝝐
\bieta𝜞
\bif𝒇
\big𝒈
\bigammaðœļ
\bigblacktriangledown▾
\bigblacktriangleupâ–ē
\bigbot⟘
\bigcap⋂
\bigcirc○
\bigcup⋃
\bigcupdotâĻƒ
\bigodotâĻ€
\bigoplusâĻ
\bigotimesâĻ‚
\bigslopedveeâЗ
\bigslopedwedgeâИ
\bigsqcapâĻ…
\bigsqcupâĻ†
\bigstar★
\bigtimesâĻ‰
\bigtop⟙
\bigtriangledownâ–―
\bigtriangleupâ–ģ
\biguplusâĻ„
\bigvee⋁
\bigwedge⋀
\bigwhitestar☆
\bih𝒉
\bii𝒊
\biiotaðœū
\bij𝒋
\bik𝒌
\bikappaðœŋ
\bil𝒍
\bilambda𝝀
\bim𝒎
\bimu𝝁
\bin𝒏
\binablaðœĩ
\binu𝝂
\bio𝒐
\biomega𝝎
\biomicron𝝄
\bip𝒑
\bipartial𝝏
\biphi𝝓
\bipi𝝅
\bipsi𝝍
\biq𝒒
\bir𝒓
\birho𝝆
\bis𝒔
\bisansA𝘞
\bisansAlpha𝞐
\bisansBð˜―
\bisansBeta𝞑
\bisansCð˜ū
\bisansChiðžĶ
\bisansDð˜ŋ
\bisansDelta𝞓
\bisansE𝙀
\bisansEpsilon𝞔
\bisansEta𝞖
\bisansF𝙁
\bisansG𝙂
\bisansGamma𝞒
\bisansH𝙃
\bisansI𝙄
\bisansIota𝞘
\bisansJ𝙅
\bisansK𝙆
\bisansKappa𝞙
\bisansL𝙇
\bisansLambda𝞚
\bisansM𝙈
\bisansMu𝞛
\bisansN𝙉
\bisansNu𝞜
\bisansO𝙊
\bisansOmegaðžĻ
\bisansOmicron𝞞
\bisansP𝙋
\bisansPhiðžĨ
\bisansPi𝞟
\bisansPsi𝞧
\bisansQ𝙌
\bisansR𝙍
\bisansRho𝞠
\bisansS𝙎
\bisansSigmaðžĒ
\bisansT𝙏
\bisansTauðžĢ
\bisansTheta𝞗
\bisansU𝙐
\bisansUpsilonðžĪ
\bisansV𝙑
\bisansW𝙒
\bisansX𝙓
\bisansXi𝞝
\bisansY𝙔
\bisansZ𝙕
\bisansZeta𝞕
\bisansa𝙖
\bisansalpha𝞊
\bisansb𝙗
\bisansbetaðžŦ
\bisansc𝙘
\bisanschi𝟀
\bisansd𝙙
\bisansdelta𝞭
\bisanse𝙚
\bisansepsilon𝟄
\bisanseta𝞰
\bisansf𝙛
\bisansg𝙜
\bisansgamma𝞎
\bisansh𝙝
\bisansi𝙞
\bisansiotaðžē
\bisansj𝙟
\bisansk𝙠
\bisanskappaðžģ
\bisanslð™Ą
\bisanslambdaðžī
\bisansmð™Ē
\bisansmuðžĩ
\bisansnð™Ģ
\bisansnablaðžĐ
\bisansnuðžķ
\bisansoð™Ī
\bisansomega𝟂
\bisansomicronðžļ
\bisanspð™Ĩ
\bisanspartial𝟃
\bisansphi𝟇
\bisanspiðžđ
\bisanspsi𝟁
\bisansqð™Ķ
\bisansr𝙧
\bisansrho𝞚
\bisanssð™Ļ
\bisanssigma𝞞
\bisanstð™Đ
\bisanstauðž―
\bisansthetaðžą
\bisansu𝙊
\bisansupsilonðžū
\bisansvð™Ŧ
\bisansvarThetaðžĄ
\bisansvarepsilonðžŪ
\bisansvarkappa𝟆
\bisansvarphiðžŋ
\bisansvarpi𝟉
\bisansvarrho𝟈
\bisansvarsigmaðžŧ
\bisansvartheta𝟅
\bisansw𝙎
\bisansx𝙭
\bisansxi𝞷
\bisansyð™Ū
\bisanszð™Ŋ
\bisanszetaðžŊ
\bisigma𝝈
\bit𝒕
\bitau𝝉
\bithetaðœ―
\biu𝒖
\biupsilon𝝊
\biv𝒗
\bivarTheta𝜭
\bivarepsilon𝜚
\bivarkappa𝝒
\bivarphi𝝋
\bivarpi𝝕
\bivarrho𝝔
\bivarsigma𝝇
\bivartheta𝝑
\biw𝒘
\bix𝒙
\bixi𝝃
\biy𝒚
\biz𝒛
\bizetaðœŧ
\bkarowâĪ
\blackcircledrightdot⚈
\blackcircledtwodots⚉
\blackcircleulquadwhite◕
\blackinwhitediamond◈
\blackinwhitesquareâ–Ģ
\blacklefthalfcircle◖
\blacklozengeâ§Ŧ
\blackpointerleft◄
\blackpointerright▹
\blackrighthalfcircle◗
\blacksmileyâ˜ŧ
\blacksquare■
\blacktriangleâ–ī
\blacktriangledownâ–ū
\blacktriangleleft◀
\blacktrianglerightâ–ķ
\blanksymbolâĒ
\blkhorzoval⎎
\blkvertovalâŽŪ
\blockfull█
\blockhalfshaded▒
\blocklefthalf▌
\blocklowhalf▄
\blockqtrshaded░
\blockrighthalf▐
\blockthreeqtrshaded▓
\blockuphalf▀
\botâŠĨ
\botsemicircle◡
\bowtie⋈
\boxast⧆
\boxbarâ—Ŧ
\boxbslash⧅
\boxcircle⧇
\boxdiag⧄
\boxdot⊡
\boxminus⊟
\boxplus⊞
\boxquestion⍰
\boxtimes⊠
\boxupcaret⍓
\breveĖ†
\brokenbarÂĶ
\bsansA𝗔
\bsansAlpha𝝖
\bsansB𝗕
\bsansBeta𝝗
\bsansC𝗖
\bsansChi𝝎
\bsansD𝗗
\bsansDelta𝝙
\bsansE𝗘
\bsansEpsilon𝝚
\bsansEta𝝜
\bsansF𝗙
\bsansG𝗚
\bsansGamma𝝘
\bsansH𝗛
\bsansI𝗜
\bsansIota𝝞
\bsansJ𝗝
\bsansK𝗞
\bsansKappa𝝟
\bsansL𝗟
\bsansLambda𝝠
\bsansM𝗠
\bsansMuðĄ
\bsansNð—Ą
\bsansNuðĒ
\bsansOð—Ē
\bsansOmegaðŪ
\bsansOmicronðĪ
\bsansPð—Ģ
\bsansPhiðŦ
\bsansPiðĨ
\bsansPsi𝝭
\bsansQð—Ī
\bsansRð—Ĩ
\bsansRhoðĶ
\bsansSð—Ķ
\bsansSigmaðĻ
\bsansT𝗧
\bsansTauðĐ
\bsansTheta𝝝
\bsansUð—Ļ
\bsansUpsilon𝝊
\bsansVð—Đ
\bsansW𝗊
\bsansXð—Ŧ
\bsansXiðĢ
\bsansY𝗎
\bsansZ𝗭
\bsansZeta𝝛
\bsansað—Ū
\bsansalpha𝝰
\bsansbð—Ŋ
\bsansbetaðą
\bsansc𝗰
\bsanschi𝞆
\bsansdð—ą
\bsansdeltaðģ
\bsanseð—ē
\bsanseightðŸī
\bsansepsilon𝞊
\bsansetaðķ
\bsansfð—ģ
\bsansfiveðŸą
\bsansfour𝟰
\bsansgð—ī
\bsansgammaðē
\bsanshð—ĩ
\bsansið—ķ
\bsansiotaðļ
\bsansj𝗷
\bsanskð—ļ
\bsanskappaðđ
\bsanslð—đ
\bsanslambda𝝚
\bsansm𝗚
\bsansmuðŧ
\bsansnð—ŧ
\bsansnablaðŊ
\bsansnineðŸĩ
\bsansnu𝝞
\bsanso𝗞
\bsansomega𝞈
\bsansomicronðū
\bsansone𝟭
\bsanspð—―
\bsanspartial𝞉
\bsansphi𝞍
\bsanspiðŋ
\bsanspsi𝞇
\bsansqð—ū
\bsansrð—ŋ
\bsansrho𝞀
\bsanss𝘀
\bsanssevenðŸģ
\bsanssigma𝞂
\bsanssixðŸē
\bsanst𝘁
\bsanstau𝞃
\bsanstheta𝝷
\bsansthreeðŸŊ
\bsanstwoðŸŪ
\bsansu𝘂
\bsansupsilon𝞄
\bsansv𝘃
\bsansvarTheta𝝧
\bsansvarepsilonðī
\bsansvarkappa𝞌
\bsansvarphi𝞅
\bsansvarpi𝞏
\bsansvarrho𝞎
\bsansvarsigma𝞁
\bsansvartheta𝞋
\bsansw𝘄
\bsansx𝘅
\bsansxið―
\bsansy𝘆
\bsansz𝘇
\bsanszero𝟎
\bsanszetaðĩ
\bscrA𝓐
\bscrB𝓑
\bscrC𝓒
\bscrD𝓓
\bscrE𝓔
\bscrF𝓕
\bscrG𝓖
\bscrH𝓗
\bscrI𝓘
\bscrJ𝓙
\bscrK𝓚
\bscrL𝓛
\bscrM𝓜
\bscrN𝓝
\bscrO𝓞
\bscrP𝓟
\bscrQ𝓠
\bscrRð“Ą
\bscrSð“Ē
\bscrTð“Ģ
\bscrUð“Ī
\bscrVð“Ĩ
\bscrWð“Ķ
\bscrX𝓧
\bscrYð“Ļ
\bscrZð“Đ
\bscra𝓊
\bscrbð“Ŧ
\bscrc𝓎
\bscrd𝓭
\bscreð“Ū
\bscrfð“Ŋ
\bscrg𝓰
\bscrhð“ą
\bscrið“ē
\bscrjð“ģ
\bscrkð“ī
\bscrlð“ĩ
\bscrmð“ķ
\bscrn𝓷
\bscroð“ļ
\bscrpð“đ
\bscrq𝓚
\bscrrð“ŧ
\bscrs𝓞
\bscrtð“―
\bscruð“ū
\bscrvð“ŋ
\bscrw𝔀
\bscrx𝔁
\bscry𝔂
\bscrz𝔃
\bsimilarleftarrow⭁
\bsimilarrightarrow⭇
\bsolhsub⟈
\btdlÉŽ
\btimesâĻē
\bulletâ€Ē
\bullseye◎
\bumpeq≏
\bumpeqqâŠŪ
\cĖ§
\cancer♋
\candraĖ
\capâˆĐ
\capdotâЀ
\capricornus♑
\capwedgeâЄ
\carriagereturnâ†ĩ
\cbrt∛
\cdot⋅
\cdotp·
\cdotsâ‹Ŋ
\checkĖŒ
\checkmark✓
\chiχ
\circ∘
\circeq≗
\circlearrowleft↹
\circlearrowrightâ†ŧ
\circledRÂŪ
\circledSⓈ
\circledast⊛
\circledbulletâĶŋ
\circledcirc⊚
\circleddash⊝
\circledequal⊜
\circledparallelâĶ·
\circledrightdot⚆
\circledstar✩
\circledtwodots⚇
\circledwhitebulletâĶū
\circlellquadâ—ĩ
\circlelrquadâ—ķ
\circleonleftarrow⎰
\circleonrightarrowâ‡ī
\circletophalfblack◓
\circleulquadâ—ī
\circleurquad◷
\circleurquadblack◔
\circlevertfill◍
\cirfb◒
\cirfl◐
\cirfnintâĻ
\cirfr◑
\clockointâĻ
\clomegÉ·
\closedvarcapâЍ
\closedvarcupâЌ
\closedvarcupsmashprodâА
\clubsuitâ™Ģ
\clwintegral∹
\coloneq≔
\commaminusâĻĐ
\complement∁
\cong≅
\congdotâĐ­
\conictaperâŒē
\conjquantâĻ‡
\coprod∐
\copyrightÂĐ
\csubâŦ
\csubeâŦ‘
\csupâŦ
\csupeâŦ’
\cup∊
\cupdot⊍
\cupveeâЅ
\curlyeqprec⋞
\curlyeqsucc⋟
\curlyvee⋎
\curlywedge⋏
\curvearrowleftâ†ķ
\curvearrowright↷
\dagger†
\dalethâ„ļ
\danger☥
\dashVâŦĢ
\dashleftharpoondownâĨŦ
\dashrightharpoondownâĨ­
\dashvâŠĢ
\dbkarowâĪ
\dblarrowupdown⇅
\ddagger‡
\ddddot⃜
\dddot⃛
\ddfncâĶ™
\ddotĖˆ
\ddots⋱
\ddotseqâĐ·
\defas⧋
\degree°
\del∇
\deltaÎī
\dhð
\diagdownâ•ē
\diagup╱
\diameter⌀
\diamond⋄
\diamondbotblack⮙
\diamondleftarrowâĪ
\diamondleftarrowbarâĪŸ
\diamondleftblack⮖
\diamondrightblack⮗
\diamondsuitâ™Ē
\diamondtopblack⎘
\dicei⚀
\diceii⚁
\diceiii⚂
\diceiv⚃
\dicev⚄
\dicevi⚅
\digammaϝ
\dingasteriskâœ―
\disinâ‹ē
\disjquantâĻˆ
\div÷
\divideontimes⋇
\djđ
\dlcornâŽĢ
\dotĖ‡
\doteq≐
\dotequivâЧ
\dotminusâˆļ
\dotplus∔
\dotsâ€Ķ
\dotsimâĐŠ
\dotsminusdots√
\dottedcircle◌
\dottedsquare⮚
\dottimesâĻ°
\doublebarveeâĐĒ
\doublepipeĮ‚
\doubleplus⧚
\downarrow↓
\downarrowbarredâĪˆ
\downdasharrowâ‡Ģ
\downdownarrows⇊
\downharpoonleft⇃
\downharpoonright⇂
\downharpoonsleftrightâĨĨ
\downvDashâŦŠ
\downwhitearrowâ‡Đ
\downzigzagarrowâ†Ŋ
\draftingarrow➛
\drbkarrowâĪ
\droangĖš
\dshfnc┆
\dsolâ§ķ
\dualmap⧟
\dyoghĘĪ
\egsdot⊘
\eighthnote♩
\elinters⏧
\ellℓ
\elsdot⩗
\emdash—
\emptyset∅
\emptysetoarrâĶģ
\emptysetoarrlâĶī
\emptysetobarâĶą
\emptysetocircâĶē
\enclosecircle⃝
\enclosediamond⃟
\enclosesquare⃞
\enclosetriangleâƒĪ
\endash–
\enspace' ' == Char(0x2002)
\eparslâ§Ģ
\epsilonÏĩ
\eqcirc≖
\eqcolon≕
\eqdef≝
\eqdotâĐĶ
\eqeqeqâĐķ
\eqgtr⋝
\eqless⋜
\eqqgtr⩚
\eqqless⩙
\eqqplusâĐą
\eqqsimâĐģ
\eqqslantgtr⩜
\eqqslantless⩛
\eqsim≂
\eqslantgtr⩖
\eqslantless⩕
\equalleftarrow⭀
\equalparallel⋕
\equiv≡
\equivDDâĐļ
\eqvparslâ§Ĩ
\eshʃ
\etaη
\ethð
\eulerâ„Ŋ
\eulermascheroniℇ
\euro₮
\exclamdownÂĄ
\exists∃
\fallingdotseq≒
\fdiagovnearrowâĪŊ
\fdiagovrdiagâĪŽ
\female♀
\fhrÉū
\fisheye◉
\flat♭
\fltnsâĨ
\forall∀
\forksâŦœ
\forksnotâŦ
\forkvâŦ™
\fourthroot∜
\frakA𝔄
\frakB𝔅
\frakCℭ
\frakD𝔇
\frakE𝔈
\frakF𝔉
\frakG𝔊
\frakHℌ
\frakIℑ
\frakJ𝔍
\frakK𝔎
\frakL𝔏
\frakM𝔐
\frakN𝔑
\frakO𝔒
\frakP𝔓
\frakQ𝔔
\frakRℜ
\frakS𝔖
\frakT𝔗
\frakU𝔘
\frakV𝔙
\frakW𝔚
\frakX𝔛
\frakY𝔜
\frakZâ„Ļ
\fraka𝔞
\frakb𝔟
\frakc𝔠
\frakdð”Ą
\frakeð”Ē
\frakfð”Ģ
\frakgð”Ī
\frakhð”Ĩ
\frakið”Ķ
\frakj𝔧
\frakkð”Ļ
\fraklð”Đ
\frakm𝔊
\fraknð”Ŧ
\frako𝔎
\frakp𝔭
\frakqð”Ū
\frakrð”Ŋ
\fraks𝔰
\fraktð”ą
\frakuð”ē
\frakvð”ģ
\frakwð”ī
\frakxð”ĩ
\frakyð”ķ
\frakz𝔷
\frownâŒĒ
\fullouterjoin⟗
\gammaÎģ
\geâ‰Ĩ
\gemini♊
\geqâ‰Ĩ
\geqq≧
\geqqslantâŦš
\geqslantâĐū
\gesccâŠĐ
\gesdot⩀
\gesdoto⩂
\gesdotol⩄
\gesles⩔
\ggâ‰Ŧ
\ggg⋙
\gggnestâŦļ
\gimelℷ
\glE⩒
\glaâŠĨ
\gljâŠĪ
\glstʔ
\gnapprox⩊
\gneq⊈
\gneqqâ‰Đ
\gnsim⋧
\graveĖ€
\gsime⊎
\gsiml⊐
\gtcc⊧
\gtcirâĐš
\gtquestâĐž
\gtrapprox⩆
\gtrdot⋗
\gtreqless⋛
\gtreqqless⩌
\gtrless≷
\gtrsimâ‰ģ
\guilsinglleftâ€đ
\guilsinglright‹
\gvertneqq"â‰Đïļ€"
\hatĖ‚
\hatapproxâĐŊ
\hbarħ
\heartsuit♡
\hermaphroditeâšĨ
\hermitconjmatrixâŠđ
\hexagon⎔
\hexagonblackâŽĢ
\highminusÂŊ
\hksearowâĪĨ
\hkswarowâĪĶ
\hlmrkˑ
\hookleftarrowâ†Đ
\hookrightarrow↩
\house⌂
\hrectangle▭
\hrectangleblack▮
\hslashℏ
\hspace' ' == Char(0x200a)
\hvligƕ
\iff⟹
\iiiintâĻŒ
\iiint∭
\iint∎
\image⊷
\imathÄą
\impliedbyâŸļ
\impliesâŸđ
\in∈
\increment∆
\indepâŦŦ
\infty∞
\inglstʖ
\intâˆŦ
\intBarâĻŽ
\intbarâĻ
\intcapâĻ™
\intcupâĻš
\intercal⊹
\interleaveâŦī
\intprodâĻž
\intprodrâĻ―
\intxâĻ˜
\inversewhitecircle◙
\invnot⌐
\invvʌ
\invwʍ
\invwhitelowerhalfcircle◛
\invwhiteupperhalfcircle◚
\iotaÎđ
\isansA𝘈
\isansB𝘉
\isansC𝘊
\isansD𝘋
\isansE𝘌
\isansF𝘍
\isansG𝘎
\isansH𝘏
\isansI𝘐
\isansJ𝘑
\isansK𝘒
\isansL𝘓
\isansM𝘔
\isansN𝘕
\isansO𝘖
\isansP𝘗
\isansQ𝘘
\isansR𝘙
\isansS𝘚
\isansT𝘛
\isansU𝘜
\isansV𝘝
\isansW𝘞
\isansX𝘟
\isansY𝘠
\isansZð˜Ą
\isansað˜Ē
\isansbð˜Ģ
\isanscð˜Ī
\isansdð˜Ĩ
\isanseð˜Ķ
\isansf𝘧
\isansgð˜Ļ
\isanshð˜Đ
\isansi𝘊
\isansjð˜Ŧ
\isansk𝘎
\isansl𝘭
\isansmð˜Ū
\isansnð˜Ŋ
\isanso𝘰
\isanspð˜ą
\isansqð˜ē
\isansrð˜ģ
\isanssð˜ī
\isanstð˜ĩ
\isansuð˜ķ
\isansv𝘷
\isanswð˜ļ
\isansxð˜đ
\isansy𝘚
\isanszð˜ŧ
\isinEâ‹đ
\isindotâ‹ĩ
\isinobar⋷
\isinsâ‹ī
\isinvbâ‹ļ
\itAðī
\itAlphað›Ē
\itBðĩ
\itBetað›Ģ
\itCðķ
\itChið›ļ
\itD𝐷
\itDeltað›Ĩ
\itEðļ
\itEpsilonð›Ķ
\itEtað›Ļ
\itFðđ
\itG𝐚
\itGammað›Ī
\itHðŧ
\itI𝐞
\itIota𝛊
\itJð―
\itKðū
\itKappað›Ŧ
\itLðŋ
\itLambda𝛎
\itM𝑀
\itMu𝛭
\itN𝑁
\itNuð›Ū
\itO𝑂
\itOmega𝛚
\itOmicron𝛰
\itP𝑃
\itPhi𝛷
\itPið›ą
\itPsið›đ
\itQ𝑄
\itR𝑅
\itRhoð›ē
\itS𝑆
\itSigmað›ī
\itT𝑇
\itTauð›ĩ
\itThetað›Đ
\itU𝑈
\itUpsilonð›ķ
\itV𝑉
\itW𝑊
\itX𝑋
\itXið›Ŋ
\itY𝑌
\itZ𝑍
\itZeta𝛧
\ita𝑎
\italpha𝛞
\itb𝑏
\itbetað›―
\itc𝑐
\itchi𝜒
\itd𝑑
\itdeltað›ŋ
\ite𝑒
\itepsilon𝜖
\iteta𝜂
\itf𝑓
\itg𝑔
\itgammað›ū
\ithℎ
\iti𝑖
\itimathðšĪ
\itiota𝜄
\itj𝑗
\itjmathðšĨ
\itk𝑘
\itkappa𝜅
\itl𝑙
\itlambda𝜆
\itm𝑚
\itmu𝜇
\itn𝑛
\itnablað›ŧ
\itnu𝜈
\ito𝑜
\itomega𝜔
\itomicron𝜊
\itp𝑝
\itpartial𝜕
\itphi𝜙
\itpi𝜋
\itpsi𝜓
\itq𝑞
\itr𝑟
\itrho𝜌
\its𝑠
\itsigma𝜎
\ittð‘Ą
\ittau𝜏
\ittheta𝜃
\ituð‘Ē
\itupsilon𝜐
\itvð‘Ģ
\itvarThetað›ģ
\itvarepsilon𝜀
\itvarkappa𝜘
\itvarphi𝜑
\itvarpi𝜛
\itvarrho𝜚
\itvarsigma𝜍
\itvartheta𝜗
\itwð‘Ī
\itxð‘Ĩ
\itxi𝜉
\ityð‘Ķ
\itz𝑧
\itzeta𝜁
\jmathČ·
\joinâĻ
\jupiter♃
\kĖĻ
\kappaΚ
\kernelcontractionâˆŧ
\lł
\lambdaÎŧ
\langleâŸĻ
\latâŠŦ
\late⊭
\lazysinvâˆū
\lceil⌈
\ldotsâ€Ķ
\ldq“
\leâ‰Ī
\leftarrow←
\leftarrowapprox⭊
\leftarrowbackapprox⭂
\leftarrowbsimilar⭋
\leftarrowonoplusâŽē
\leftarrowplusâĨ†
\leftarrowtailâ†Ē
\leftarrowtriangleâ‡―
\leftarrowxâŽū
\leftbkarrowâĪŒ
\leftcurvedarrowâŽŋ
\leftdasharrow⇠
\leftdbkarrowâĪŽ
\leftdotarrowâŽļ
\leftharpoonaccent⃐
\leftharpoondownâ†―
\leftharpoonsupdownâĨĒ
\leftharpoonup↾
\leftharpoonupdashâĨŠ
\leftleftarrows⇇
\leftmoonâ˜ū
\leftouterjoin⟕
\leftrightarrow↔
\leftrightarrowcircleâĨˆ
\leftrightarrows⇆
\leftrightarrowtriangleâ‡ŋ
\leftrightharpoondownupâĨ‹
\leftrightharpoons⇋
\leftrightharpoonsdownâĨ§
\leftrightharpoonsupâĨĶ
\leftrightharpoonupdownâĨŠ
\leftrightsquigarrow↭
\leftsquigarrow⇜
\leftthreearrows⎹
\leftthreetimes⋋
\leftwavearrow↜
\leftwhitearrowâ‡Ķ
\leo♌
\leqâ‰Ī
\leqqâ‰Ķ
\leqqslantâŦđ
\leqslantâĐ―
\lesccâŠĻ
\lesdotâĐŋ
\lesdoto⊁
\lesdotor⊃
\lesges⩓
\lessapprox⩅
\lessdot⋖
\lesseqgtr⋚
\lesseqqgtr⩋
\lessgtrâ‰ķ
\lesssimâ‰ē
\lfloor⌊
\lgE⩑
\lgblkcircleâŽĪ
\lgblksquare⮛
\lgwhtcircleâ—Ŋ
\lgwhtsquare⮜
\libra♎
\linefeedâ†ī
\ll≩
\llarc◟
\llblacktriangleâ—Ģ
\llbracketâŸĶ
\llcorner⌞
\lllnestâŦ·
\lltriangle◹
\lmoustache⎰
\lmrkː
\lnapprox⩉
\lneq⩇
\lneqqâ‰Ļ
\lnsimâ‹Ķ
\longleftarrowâŸĩ
\longleftrightarrow⟷
\longleftsquigarrowâŽģ
\longmapsfromâŸŧ
\longmapsto⟾
\longrightarrowâŸķ
\longrightsquigarrowâŸŋ
\looparrowleftâ†Ŧ
\looparrowright↮
\low˕
\lowintâĻœ
\lozenge◊
\lpargtâĶ 
\lq‘
\lrarc◞
\lrblacktriangleâ—Ē
\lrcorner⌟
\lrtriangleâ—ŋ
\lrtriangleeq⧥
\lsime⊍
\lsimg⊏
\lsqhookâŦ
\ltccâŠĶ
\ltcirâĐđ
\ltimes⋉
\ltlmrÉą
\ltlnÉē
\ltphiÉļ
\ltquestâĐŧ
\lvboxlineâŽļ
\lvertneqq"â‰Ļïļ€"
\male♂
\maltese✠
\mapsdown↧
\mapsfromâ†Ī
\mapstoâ†Ķ
\mapsupâ†Ĩ
\mars♂
\mdblkcircleâšŦ
\mdblkdiamondâŽĨ
\mdblklozenge⎧
\mdblksquare◾
\mdlgblkcircle●
\mdlgblkdiamond◆
\mdlgwhtdiamond◇
\mdsmblksquareâ—ū
\mdsmwhtcircle⚮
\mdsmwhtsquareâ—―
\mdwhtcircle⚩
\mdwhtdiamondâŽĶ
\mdwhtlozengeâŽĻ
\mdwhtsquareâ—ŧ
\measangledltoswâĶŊ
\measangledrtoseâĶŪ
\measangleldtoswâĶŦ
\measanglelutonwâĶĐ
\measanglerdtoseâĶŠ
\measanglerutoneâĶĻ
\measangleultonwâĶ­
\measangleurtoneâĶŽ
\measeq≞
\measuredangle∥
\measuredangleleftâĶ›
\medblackstar⭑
\medwhitestar⭐
\mercuryâ˜ŋ
\mho℧
\midâˆĢ
\midbarveeâН
\midbarwedgeâМ
\minhatâП
\minus−
\minusdotâĻŠ
\minusfdotsâĻŦ
\minusrdotsâĻŽ
\mlcpâŦ›
\models⊧
\modtwosumâĻŠ
\mp∓
\muΞ
\multimapâŠļ
\nBumpeq"≎Ėļ"
\nHdownarrow⇟
\nHuparrow⇞
\nLeftarrow⇍
\nLeftrightarrow⇎
\nRightarrow⇏
\nVDashâŠŊ
\nVdashâŠŪ
\nVleftarrow⇹
\nVleftarrowtail⎚
\nVleftrightarrow⇾
\nVrightarrowâ‡ŧ
\nVrightarrowtailâĪ•
\nVtwoheadleftarrowâŽĩ
\nVtwoheadleftarrowtailâŽ―
\nVtwoheadrightarrowâĪ
\nVtwoheadrightarrowtailâĪ˜
\nabla∇
\nand⊾
\napprox≉
\nasymp≭
\naturalâ™Ū
\nbumpeq"≏Ėļ"
\ncong≇
\ne≠
\nearrow↗
\negÂŽ
\neovnwarrowâĪą
\neovsearrowâĪŪ
\neptune♆
\neqsim"≂Ėļ"
\nequivâ‰Ē
\neuterâšē
\nexists∄
\ngŋ
\ngeq≱
\ngeqslant"âĐūĖļ"
\ngtrâ‰Ŋ
\ngtrsimâ‰ĩ
\ni∋
\niobarâ‹ū
\nis⋾
\nisd⋹
\nleftarrow↚
\nleftrightarrowâ†Ū
\nleq≰
\nleqslant"âĐ―Ėļ"
\nlessâ‰Ū
\nlesssimâ‰ī
\nmidâˆĪ
\nni∌
\nolinebreak\u2060
\norâŠ―
\notĖļ
\notbackslash⍀
\notgreaterlessâ‰đ
\notin∉
\notlessgreaterâ‰ļ
\notslashâŒŋ
\nparallelâˆĶ
\npolintâĻ”
\nprec⊀
\npreccurlyeq⋠
\npreceq"âŠŊĖļ"
\nprecsim"â‰ūĖļ"
\nrightarrow↛
\nrlegƞ
\nsim≁
\nsime≄
\nsqsubseteqâ‹Ē
\nsqsupseteqâ‹Ģ
\nsubset⊄
\nsubseteq⊈
\nsubseteqq"âŦ…Ėļ"
\nsucc⊁
\nsucccurlyeq⋡
\nsucceq"⊰Ėļ"
\nsuccsim"â‰ŋĖļ"
\nsupset⊅
\nsupseteq⊉
\nsupseteqq"âŦ†Ėļ"
\ntriangleleft⋩
\ntrianglelefteq⋮
\ntrianglerightâ‹Ŧ
\ntrianglerighteq⋭
\nuÎ―
\numero№
\nvDash⊭
\nvLeftarrowâĪ‚
\nvLeftrightarrowâĪ„
\nvRightarrowâĪƒ
\nvdash⊮
\nvleftarrow⇷
\nvleftarrowtailâŽđ
\nvleftrightarrowâ‡đ
\nvrightarrowâ‡ļ
\nvrightarrowtailâĪ”
\nvtwoheadleftarrowâŽī
\nvtwoheadleftarrowtail⎞
\nvtwoheadrightarrowâĪ€
\nvtwoheadrightarrowtailâĪ—
\nwarrow↖
\nwovnearrowâĪē
\oÃļ
\obarâŒ―
\obslashâĶļ
\ocircĖŠ
\ocommatoprightĖ•
\odivâĻļ
\odot⊙
\odotslashdotâĶž
\oeœ
\ogreaterthan⧁
\ohmâ„Ķ
\oiiint∰
\oiintâˆŊ
\ointâˆŪ
\ointctrclockwiseâˆģ
\olessthan⧀
\omegaω
\ominus⊖
\openbracketleftâŸĶ
\openbracketright⟧
\openoɔ
\oplus⊕
\opluslhrimâĻ­
\oplusrhrimâĻŪ
\ordfeminineŠ
\ordmasculineš
\originalâŠķ
\oslash⊘
\otimes⊗
\otimeshatâĻķ
\otimeslhrimâĻī
\otimesrhrimâĻĩ
\oturnedcommaĖ’
\overbarĖ…
\overbrace⏞
\overbracketâŽī
\overleftarrow⃖
\overleftrightarrow⃥
\ovhookĖ‰
\palhĖĄ
\parallelâˆĨ
\parallelogram▱
\parallelogramblack▰
\partial∂
\partialmeetcontractionâŠĢ
\pbgamÉĪ
\pentagon⎠
\pentagonblack⮟
\perp⟂
\perspcorrespondâО
\pertenthousand‱
\perthousand‰
\pes₧
\pgammaÉĢ
\phiϕ
\piπ
\pisces♓
\pitchfork⋔
\planckℎ
\plusdotâĻĨ
\pluseqqâĐē
\plushatâĻĢ
\plussimâĻĶ
\plussubtwoâĻ§
\plustrifâĻĻ
\pluto♇
\pmÂą
\pointintâĻ•
\postalmark〒
\pppprime⁗
\ppprimeâ€ī
\pprimeâ€ģ
\prec≹
\precapprox⊷
\preccurlyeq≾
\preceqâŠŊ
\preceqqâŠģ
\precnapproxâŠđ
\precneq⊹
\precneqqâŠĩ
\precnsimâ‹Ļ
\precsimâ‰ū
\primeâ€ē
\prod∏
\profline⌒
\profsurf⌓
\propto∝
\prurel⊰
\pscrvʋ
\psiψ
\pupsilʊ
\quad' ' == Char(0x2003)
\quarternoteâ™Đ
\questeq≟
\questiondownÂŋ
\rLarrâĨ„
\rais˔
\rangleâŸĐ
\rarrxâĨ‡
\raspĘž
\rceil⌉
\rdiagovfdiagâĪŦ
\rdiagovsearrowâĪ°
\rdq”
\reapos‛
\recorder⌕
\reglstʕ
\revangleâĶĢ
\revangleubarâĶĨ
\revemptysetâĶ°
\rfloor⌋
\rhĖĒ
\rhoρ
\rightangle∟
\rightanglearcâŠū
\rightanglemdotâĶ
\rightarrow→
\rightarrowbackapprox⭈
\rightarrowbarâ‡Ĩ
\rightarrowbsimilar⭌
\rightarrowdiamondâĪž
\rightarrowgtr⭃
\rightarrowplusâĨ…
\rightarrowsupset⭄
\rightarrowtailâ†Ģ
\rightarrowtriangleâ‡ū
\rightdasharrowâ‡Ē
\rightdotarrowâĪ‘
\rightharpoonaccent⃑
\rightharpoondown⇁
\rightharpoonsupdownâĨĪ
\rightharpoonup⇀
\rightharpoonupdashâĨŽ
\rightleftarrows⇄
\rightleftharpoons⇌
\rightleftharpoonsdownâĨĐ
\rightleftharpoonsupâĨĻ
\rightmoonâ˜―
\rightouterjoin⟖
\rightpentagon⭔
\rightpentagonblack⭓
\rightrightarrows⇉
\rightsquigarrow⇝
\rightthreearrowsâ‡ķ
\rightthreetimes⋌
\rightwavearrow↝
\rightwhitearrowâ‡Ļ
\ringplusâĻĒ
\risingdotseq≓
\rlÉž
\rmoustache⎱
\rppolintâĻ’
\rq’
\rrbracket⟧
\rsolbar⧷
\rsqhookâŦŽ
\rtimes⋊
\rtldɖ
\rtllÉ­
\rtlnÉģ
\rtlrÉ―
\rtlsʂ
\rtltʈ
\rtlzʐ
\rttrnrÉŧ
\rvboxlineâŽđ
\rvbull◘
\sagittarius♐
\sansA𝖠
\sansBð–Ą
\sansCð–Ē
\sansDð–Ģ
\sansEð–Ī
\sansFð–Ĩ
\sansGð–Ķ
\sansH𝖧
\sansIð–Ļ
\sansJð–Đ
\sansK𝖊
\sansLð–Ŧ
\sansLmirrored⅃
\sansLturned⅂
\sansM𝖎
\sansN𝖭
\sansOð–Ū
\sansPð–Ŋ
\sansQ𝖰
\sansRð–ą
\sansSð–ē
\sansTð–ģ
\sansUð–ī
\sansVð–ĩ
\sansWð–ķ
\sansX𝖷
\sansYð–ļ
\sansZð–đ
\sansa𝖚
\sansbð–ŧ
\sansc𝖞
\sansdð–―
\sanseð–ū
\sanseight𝟊
\sansfð–ŋ
\sansfive𝟧
\sansfourðŸĶ
\sansg𝗀
\sansh𝗁
\sansi𝗂
\sansj𝗃
\sansk𝗄
\sansl𝗅
\sansm𝗆
\sansn𝗇
\sansnineðŸŦ
\sanso𝗈
\sansoneðŸĢ
\sansp𝗉
\sansq𝗊
\sansr𝗋
\sanss𝗌
\sanssevenðŸĐ
\sanssixðŸĻ
\sanst𝗍
\sansthreeðŸĨ
\sanstwoðŸĪ
\sansu𝗎
\sansv𝗏
\sansw𝗐
\sansx𝗑
\sansy𝗒
\sansz𝗓
\sanszeroðŸĒ
\saturn♄
\sbbrgĖŠ
\sblhr˓
\sbrhr˒
\schwaə
\scorpio♏
\scpolintâĻ“
\scrA𝒜
\scrB℮
\scrC𝒞
\scrD𝒟
\scrEℰ
\scrFℱ
\scrGð’Ē
\scrHℋ
\scrIℐ
\scrJð’Ĩ
\scrKð’Ķ
\scrLℒ
\scrMâ„ģ
\scrNð’Đ
\scrO𝒊
\scrPð’Ŧ
\scrQ𝒎
\scrRℛ
\scrSð’Ū
\scrTð’Ŋ
\scrU𝒰
\scrVð’ą
\scrWð’ē
\scrXð’ģ
\scrYð’ī
\scrZð’ĩ
\scrað’ķ
\scrb𝒷
\scrcð’ļ
\scrdð’đ
\screâ„Ŋ
\scrfð’ŧ
\scrgℊ
\scrhð’―
\scrið’ū
\scrjð’ŋ
\scrk𝓀
\scrl𝓁
\scrm𝓂
\scrn𝓃
\scroâ„ī
\scrp𝓅
\scrq𝓆
\scrr𝓇
\scrs𝓈
\scrt𝓉
\scru𝓊
\scrv𝓋
\scrw𝓌
\scrx𝓍
\scry𝓎
\scrz𝓏
\scurel⊱
\searrow↘
\seovnearrowâĪ­
\setminus∖
\sharpâ™Ŋ
\shuffleâ§Ē
\sigmaσ
\sim∞
\simeq≃
\simgE⊠
\simgtr⊞
\similarleftarrow⭉
\simlE⩟
\simless⊝
\simminussimâĐŽ
\simplusâĻĪ
\simrdotsâĐŦ
\sinewaveâˆŋ
\smallblacktriangleleft◂
\smallblacktrianglerightâ–ļ
\smallin∊
\smallni∍
\smalltriangleleft◃
\smalltrianglerightâ–đ
\smashtimesâĻģ
\smblkdiamondâŽĐ
\smblklozenge⎊
\smblksquare▩
\smeparslâ§Ī
\smileâŒĢ
\smt⊊
\smte⊎
\smwhitestar⭒
\smwhtcircleâ—Ķ
\smwhtlozengeâŽŦ
\smwhtsquareâ–Ŧ
\soutĖķ
\spadesuit♠
\sphericalangleâˆĒ
\sphericalangleupâĶĄ
\sqcap⊓
\sqcup⊔
\sqfl◧
\sqfnw┙
\sqfrâ—Ļ
\sqfse◩
\sqlozenge⌑
\sqrintâĻ–
\sqrt√
\sqrtbottom⎷
\sqspneâ‹Ĩ
\sqsubset⊏
\sqsubseteq⊑
\sqsubsetneqâ‹Ī
\sqsupset⊐
\sqsupseteq⊒
\square□
\squarebotblack⮓
\squarecrossfillâ–Đ
\squarehfillâ–Ī
\squarehvfillâ–Ķ
\squarellblack⮕
\squarellquad◱
\squarelrquadâ—ē
\squareneswfillâ–Ļ
\squarenwsefill▧
\squaretopblack⮒
\squareulblackâ—Đ
\squareulquad◰
\squareurblack⮔
\squareurquadâ—ģ
\squarevfillâ–Ĩ
\squovalâ–Ē
\ssß
\star⋆
\starequal≛
\sterlingÂĢ
\strikeĖķ
\strnsâĪ
\subedotâŦƒ
\submultâŦ
\subset⊂
\subsetapproxâŦ‰
\subsetdotâŠ―
\subseteq⊆
\subseteqqâŦ…
\subsetneq⊊
\subsetneqqâŦ‹
\subsetplusâŠŋ
\subsimâŦ‡
\subsubâŦ•
\subsupâŦ“
\succâ‰ŧ
\succapproxâŠļ
\succcurlyeqâ‰―
\succeq⊰
\succeqqâŠī
\succnapprox⊚
\succneqâŠē
\succneqqâŠķ
\succnsimâ‹Đ
\succsimâ‰ŋ
\sum∑
\sumintâĻ‹
\sun☞
\supdsubâŦ˜
\supedotâŦ„
\suphsol⟉
\suphsubâŦ—
\supmultâŦ‚
\supset⊃
\supsetapproxâŦŠ
\supsetdotâŠū
\supseteq⊇
\supseteqqâŦ†
\supsetneq⊋
\supsetneqqâŦŒ
\supsetplusâŦ€
\supsimâŦˆ
\supsubâŦ”
\supsupâŦ–
\surd√
\swarrow↙
\tauτ
\taurus♉
\tdcolâŦķ
\teshʧ
\thÃū
\thereforeâˆī
\thetaÎļ
\thickspace' ' == Char(0x2005)
\thinspace' ' == Char(0x2009)
\threedangle⟀
\threeunderdotâƒĻ
\tieconcat⁀
\tildeĖƒ
\tildelow˜
\tildetrpl≋
\times×
\timesbarâĻą
\to→
\toeaâĪĻ
\tonaâĪ§
\topâŠĪ
\topbotâŒķ
\topsemicircle◠
\tosaâĪĐ
\towaâĪŠ
\trademarkâ„Ē
\trapeziumâĒ
\trianglecdot◮
\triangledownâ–ŋ
\triangleleft◁
\triangleleftblack◭
\trianglelefteqâŠī
\triangleminusâĻš
\triangleplusâĻđ
\triangleq≜
\triangleright▷
\trianglerightblackâ—Ū
\trianglerighteqâŠĩ
\triangletimesâĻŧ
\tricolon⁝
\tripleplusâ§ŧ
\trnaɐ
\trnhÉĨ
\trnmÉŊ
\trnmlrÉ°
\trnrÉđ
\trnrlÉš
\trnsaɒ
\trntʇ
\trnyʎ
\ttA𝙰
\ttBð™ą
\ttCð™ē
\ttDð™ģ
\ttEð™ī
\ttFð™ĩ
\ttGð™ķ
\ttH𝙷
\ttIð™ļ
\ttJð™đ
\ttK𝙚
\ttLð™ŧ
\ttM𝙞
\ttNð™―
\ttOð™ū
\ttPð™ŋ
\ttQ𝚀
\ttR𝚁
\ttS𝚂
\ttT𝚃
\ttU𝚄
\ttV𝚅
\ttW𝚆
\ttX𝚇
\ttY𝚈
\ttZ𝚉
\tta𝚊
\ttb𝚋
\ttc𝚌
\ttd𝚍
\tte𝚎
\tteightðŸū
\ttf𝚏
\ttfiveðŸŧ
\ttfour𝟚
\ttg𝚐
\tth𝚑
\tti𝚒
\ttj𝚓
\ttk𝚔
\ttl𝚕
\ttm𝚖
\ttn𝚗
\ttnineðŸŋ
\tto𝚘
\ttone𝟷
\ttp𝚙
\ttq𝚚
\ttr𝚛
\tts𝚜
\ttsevenðŸ―
\ttsix𝟞
\ttt𝚝
\ttthreeðŸđ
\tttwoðŸļ
\ttu𝚞
\ttv𝚟
\ttw𝚠
\ttxðšĄ
\ttyðšĒ
\ttzðšĢ
\ttzeroðŸķ
\turnangleâĶĒ
\turnediotaâ„Đ
\turnednot⌙
\turnkʞ
\twocapsâЋ
\twocupsâЊ
\twoheaddownarrow↡
\twoheadleftarrow↞
\twoheadleftarrowtailâŽŧ
\twoheadleftdbkarrow⎷
\twoheadmapsfromâŽķ
\twoheadmapstoâĪ…
\twoheadrightarrow↠
\twoheadrightarrowtailâĪ–
\twoheaduparrow↟
\twoheaduparrowcircleâĨ‰
\twonotesâ™Ŧ
\u˘
\ularc◜
\ulblacktriangleâ—Ī
\ulcorner⌜
\ultriangleâ—ļ
\uminusâЁ
\underbarĖē
\underbrace⏟
\underbracketâŽĩ
\underleftarrowâƒŪ
\underleftharpoondown⃭
\underleftrightarrow͍
\underrightarrowâƒŊ
\underrightharpoondown⃎
\upMuΜ
\upNuΝ
\upOmicronΟ
\upand⅋
\uparrow↑
\uparrowbarredâĪ‰
\updasharrow⇡
\updownarrow↕
\updownarrowbarâ†Ļ
\updownharpoonleftrightâĨ
\updownharpoonrightleftâĨŒ
\upepsilonÎĩ
\upharpoonleftâ†ŋ
\upharpoonrightâ†ū
\upharpoonsleftrightâĨĢ
\upin⟒
\upintâĻ›
\upkoppaϟ
\uplus⊎
\upoldKoppaϘ
\upoldkoppaϙ
\upomicronÎŋ
\upsampiÏĄ
\upsilonυ
\upstigmaϛ
\upuparrows⇈
\upvDashâŦŦ
\upvarbetaϐ
\upwhitearrow⇧
\uranus♅
\urarc◝
\urblacktriangleâ—Ĩ
\urcorner⌝
\urtriangleâ—đ
\vDashâŠĻ
\varThetaÏī
\varbarwedge⌅
\varcarriagereturn⏎
\varclubsuit♧
\vardiamondsuitâ™Ķ
\vardoublebarwedge⌆
\varepsilonÎĩ
\varheartsuitâ™Ĩ
\varhexagon⎥
\varhexagonblackâŽĒ
\varhexagonlrbonds⌮
\varisinobarâ‹ķ
\varisinsâ‹ģ
\varkappaÏ°
\varlrtriangleâŠŋ
\varniobarâ‹―
\varnisâ‹ŧ
\varnothing∅
\varointclockwiseâˆē
\varphiφ
\varpiϖ
\varrhoÏą
\varsigmaς
\varspadesuitâ™Ī
\varstarâœķ
\varsubsetneqq"⊊ïļ€"
\varsupsetneq"⊋ïļ€"
\varthetaϑ
\vartriangleâ–ĩ
\vartriangleleftâŠē
\vartrianglerightâŠģ
\varveebarâĐĄ
\vdashâŠĒ
\vdotsâ‹Ū
\vec⃗
\veeâˆĻ
\veebarâŠŧ
\veedoublebarâĐĢ
\veeeq≚
\veemidvertâЛ
\veeodotâВ
\venus♀
\vertiˌ
\vertoverlay⃒
\vertsˈ
\verymuchless⋘
\viewdata⌗
\virgo♍
\visiblespaceâĢ
\vrectangleblackâ–Ū
\vrectoâ–Ŋ
\vysmblkcircle∙
\vysmblksquare⎝
\vysmwhtsquare⮞
\wedge∧
\wedgedot⟑
\wedgedoublebarâĐ 
\wedgemidvertâК
\wedgeodotâБ
\wedgeonwedgeâЕ
\wedgeq≙
\whitearrowupfrombar⇩
\whiteinwhitetriangle⟁
\whitepointerleft◅
\whitepointerrightâ–ŧ
\whthorzoval⎭
\whtvertovalâŽŊ
\wideangledownâĶĶ
\wideangleupâĶ§
\widebridgeaboveâƒĐ
\wideutildeĖ°
\wp℘
\wr≀
\xiÎū
\xorâŠŧ
\xrat℞
\yenÂĨ
\yoghʒ
\zetaÎķ
ÂĄÂĢÂĨÂĶ§ÂĐŠŽÂŪÂŊ°¹ÂēÂģÂķ·ÂđÂšÂžÂ―ÂūÂŋÅÆÐ×ØÞßÃĨÃĶðð÷ÃļÃūÄÄ‘Ä§ÄąÅÅ‚ÅŠÅ‹Å’Å“Æ•ÆžÆĩĮ‚ȷɐɒɔɖəÉĢÉĪÉĨÉŽÉ­ÉŊÉ°ÉąÉēÉģÉ·ÉļÉđÉšÉŧÉžÉ―ÉūʂʃʇʈʊʋʌʍʎʐʒʔʕʖʞĘĪʧʰĘēĘģĘ·Ęļʾˈˌːˑ˒˓˔˕˘˜ˡËĒËĢĖ€ĖĖ‚ĖƒĖ„Ė…Ė†Ė‡ĖˆĖ‰ĖŠĖ‹ĖŒĖĖ’Ė•ĖšĖĄĖĒĖ§ĖĻĖŠĖ°ĖēĖķĖķĖļ͍ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡÎĢÎĪÎĨÎĶΧÎĻÎĐÎąÎēÎģÎīÎĩÎĩÎķηÎļÎđΚÎŧÎžÎ―ÎūÎŋÏ€ÏÏ‚ÏƒÏ„Ï…Ï†Ï‡ÏˆÏ‰ÏÏ‘Ï•Ï–Ï˜Ï™ÏšÏ›ÏœÏÏžÏŸÏ ÏĄÏ°ÏąÏīÏĩÏķáīŽáīŪáī°áīąáīģáīīáīĩáīķáī·áīļáīđáīšáīžáīūáīŋáĩ€áĩáĩ‚áĩƒáĩ…áĩ‡áĩˆáĩ‰áĩ‹áĩáĩáĩáĩ’áĩ–áĩ—áĩ˜áĩ›áĩáĩžáĩŸáĩ áĩĄáĩĒáĩĢáĩĪáĩĨáĩĶáĩ§áĩĻáĩĐáĩŠáķœáķ áķĨáķēáķŧáķŋ     –—‖‘’‛“”†‡â€Ēâ€Ķâ€Ķ‰‱â€ēâ€ģâ€īâ€ĩâ€ķ‷â€đ‹⁀⁗⁝⁠⁰ⁱâīâĩâķ⁷âļâđ⁚âŧâžâ―âūâŋ₀₁₂₃₄₅₆₇₈₉₊₋₌₍₎ₐₑₒₓₔₕₖₗₘₙₚₛₜ₧₮⃒⃐⃑⃖⃗⃛⃜⃝⃞⃟⃡âƒĪ⃧âƒĻâƒĐ⃎⃭âƒŪâƒŊ⃰ℂℇℊℋℌℍℎℎℏℐℑℑℒℓℕ№℘ℙℚℛℜℜℝ℞â„Ēâ„Īâ„Ķ℧â„Ļâ„Đâ„Ŧ℮ℭâ„Ŋâ„Ŋℰℱâ„ēâ„ģâ„īâ„ĩâ„ķℷâ„ļâ„žâ„―â„ūâ„ŋ⅀⅁⅂⅃⅄ⅅⅆⅇⅈⅉ⅊⅋⅐⅑⅒⅓⅔⅕⅖⅗⅘⅙⅚⅛⅜⅝⅞⅟↉←↑→→↓↔↕↖↗↘↙↚↛↜↝↞↟↠↡â†Ēâ†Ģâ†Īâ†Ĩâ†Ķ↧â†Ļâ†Đ↩â†Ŧ↮↭â†Ūâ†Ŋ↰↱â†ēâ†ģâ†īâ†ĩâ†ķ↷â†ļâ†đ↹â†ŧâ†žâ†―â†ūâ†ŋ⇀⇁⇂⇃⇄⇅⇆⇇⇈⇉⇊⇋⇌⇍⇎⇏⇐⇑⇒⇓⇔⇕⇖⇗⇘⇙⇚⇛⇜⇝⇞⇟⇠⇡â‡Ēâ‡Ģâ‡Īâ‡Ĩâ‡Ķ⇧â‡Ļâ‡Đ⇩â‡īâ‡ĩâ‡ķ⇷â‡ļâ‡đ⇹â‡ŧâ‡žâ‡―â‡ūâ‡ŋ∀∁∂∃∄∅∅∆∇∇∈∉∊∋∌∍∎∏∐∑−∓∔∖∗∘∙√√∛∜∝∞∟∠∡âˆĒâˆĢâˆĪâˆĨâˆĶ∧âˆĻâˆĐ∊âˆŦ∎∭âˆŪâˆŊ∰∹âˆēâˆģâˆīâˆĩ∷âˆļ√âˆŧâˆžâˆ―âˆūâˆŋ≀≁≂≂Ėļ≃≄≅≆≇≈≉≊≋≌≍≎≎Ėļ≏≏Ėļ≐≑≒≓≔≕≖≗≘≙≚≛≜≝≞≟≠≡â‰Ēâ‰Ģâ‰Īâ‰Īâ‰Ĩâ‰Ĩâ‰Ķ≧â‰Ļâ‰Ļïļ€â‰Đâ‰Đïļ€â‰Šâ‰ŠĖļâ‰Ŧâ‰ŦĖļ≮≭â‰Ūâ‰Ŋ≰≱â‰ēâ‰ģâ‰īâ‰ĩâ‰ķ≷â‰ļâ‰đ≹â‰ŧâ‰žâ‰―â‰ūâ‰ūĖļâ‰ŋâ‰ŋĖļ⊀⊁⊂⊃⊄⊅⊆⊇⊈⊉⊊⊊ïļ€âŠ‹âŠ‹ïļ€âŠâŠŽâŠâŠĖļ⊐⊐Ėļ⊑⊒⊓⊔⊕⊖⊗⊘⊙⊚⊛⊜⊝⊞⊟⊠⊡âŠĒâŠĢâŠĪâŠĨ⊧âŠĻâŠĐ⊩âŠŦ⊮⊭âŠŪâŠŊ⊰⊱âŠēâŠģâŠīâŠĩâŠķ⊷âŠļâŠđ⊹âŠŧâŠŧâŠžâŠžâŠ―âŠ―âŠūâŠŋ⋀⋁⋂⋃⋄⋅⋆⋇⋈⋉⋊⋋⋌⋍⋎⋏⋐⋑⋒⋓⋔⋕⋖⋗⋘⋙⋚⋛⋜⋝⋞⋟⋠⋡â‹Ēâ‹Ģâ‹Īâ‹Ĩâ‹Ķ⋧â‹Ļâ‹Đ⋩â‹Ŧ⋮⋭â‹Ūâ‹Ŋ⋰⋱â‹ēâ‹ģâ‹īâ‹ĩâ‹ķ⋷â‹ļâ‹đ⋹â‹ŧâ‹žâ‹―â‹ūâ‹ŋ⌀⌂⌅⌆⌈⌉⌊⌋⌐⌑⌒⌓⌕⌗⌙⌜⌝⌞⌟âŒĒâŒĢ⌮âŒēâŒķâŒ―âŒŋ⍀⍓⍰⎔âŽĢ⎰⎱âŽīâŽĩâŽķ⎷âŽļâŽđ⏎⏞⏟âĒâĢâĪâĨâĶ⏧âĒâĢⓈ┆┙╱â•ē▀▄█▌▐░▒▓■□â–Ēâ–Ģâ–Īâ–Ĩâ–Ķ▧â–Ļâ–Đ▩â–Ŧ▮▭â–Ūâ–Ŋ▰▱â–ēâ–ģâ–īâ–ĩâ–ķ▷â–ļâ–đ▹â–ŧâ–žâ–―â–ūâ–ŋ◀◁◂◃◄◅◆◇◈◉◊○◌◍◎●◐◑◒◓◔◕◖◗◘◙◚◛◜◝◞◟◠◡â—Ēâ—Ģâ—Īâ—Ĩâ—Ķ◧â—Ļâ—Đ◩â—Ŧ◮◭â—Ūâ—Ŋ◰◱â—ēâ—ģâ—īâ—ĩâ—ķ◷â—ļâ—đ◹â—ŧâ—žâ—―â—ūâ—ŋ★☆☉☡â˜ŧâ˜žâ˜―â˜ūâ˜ŋ♀♀♂♂♃♄♅♆♇♈♉♊♋♌♍♎♏♐♑♒♓♠♡â™Ēâ™Ģâ™Īâ™Ĩâ™Ķ♧â™Đ♩â™Ŧ♭â™Ūâ™Ŋâ™ū⚀⚁⚂⚃⚄⚅⚆⚇⚈⚉âšĨ⚩âšŦ⚮âšē✓✠✩âœķâœ―âž›âŸ€âŸâŸ‚âŸˆâŸ‰âŸ‘âŸ’âŸ•âŸ–âŸ—âŸ˜âŸ™âŸĶâŸĶ⟧⟧âŸĻâŸĐ⟰⟱âŸĩâŸķ⟷âŸļâŸļâŸđâŸđ⟹⟹âŸŧâŸžâŸ―âŸūâŸŋâĪ€âĪâĪ‚âĪƒâĪ„âĪ…âĪ†âĪ‡âĪˆâĪ‰âĪŠâĪ‹âĪŒâĪâĪŽâĪâĪâĪ‘âĪ’âĪ“âĪ”âĪ•âĪ–âĪ—âĪ˜âĪâĪžâĪŸâĪ âĪĨâĪĶâĪ§âĪĻâĪĐâĪŠâĪŦâĪŽâĪ­âĪŪâĪŊâĪ°âĪąâĪēâĨ‚âĨ„âĨ…âĨ†âĨ‡âĨˆâĨ‰âĨŠâĨ‹âĨŒâĨâĨŽâĨâĨâĨ‘âĨ’âĨ“âĨ”âĨ•âĨ–âĨ—âĨ˜âĨ™âĨšâĨ›âĨœâĨâĨžâĨŸâĨ âĨĄâĨĒâĨĢâĨĪâĨĨâĨĶâĨ§âĨĻâĨĐâĨŠâĨŦâĨŽâĨ­âĨŪâĨŊâĨ°âĶ€âĶ†âĶ™âĶ›âĶœâĶâĶžâĶŸâĶ âĶĄâĶĒâĶĢâĶĪâĶĨâĶĶâĶ§âĶĻâĶĐâĶŠâĶŦâĶŽâĶ­âĶŪâĶŊâĶ°âĶąâĶēâĶģâĶīâĶ·âĶļâĶžâĶūâĶŋ⧀⧁⧄⧅⧆⧇⧊⧋⧏⧏Ėļ⧐⧐Ėļ⧟⧡â§Ēâ§Ģâ§Īâ§Ĩâ§Ŧâ§īâ§ķ⧷⧚â§ŧâĻ€âĻâĻ‚âĻƒâĻ„âĻ…âĻ†âĻ‡âĻˆâĻ‰âĻŠâĻ‹âĻŒâĻâĻŽâĻâĻâĻ‘âĻ’âĻ“âĻ”âĻ•âĻ–âĻ˜âĻ™âĻšâĻ›âĻœâĻâĻŸâĻĒâĻĢâĻĪâĻĨâĻĶâĻ§âĻĻâĻĐâĻŠâĻŦâĻŽâĻ­âĻŪâĻŊâĻ°âĻąâĻēâĻģâĻīâĻĩâĻķâĻ·âĻļâĻđâĻšâĻŧâĻžâĻ―âĻŋâЀâЁâЂâЃâЄâЅâЊâЋâЌâЍâЎâЏâАâБâВâГâДâЕâЖâЗâИâКâЛâМâНâОâПâĐ âĐĄâĐĒâĐĢâĐĶâЧâĐŠâĐŦâĐŽâĐ­âĐŪâĐŊâĐ°âĐąâĐēâĐģâĐīâĐĩâĐķâĐ·âĐļâĐđâĐšâĐŧâĐžâĐ―âĐ―ĖļâĐūâĐūĖļâĐŋ⩀⩁⩂⩃⩄⩅⩆⩇⩈⩉⩊⩋⩌⩍⩎⩏⩐⩑⩒⩓⩔⩕⩖⩗⩘⩙⩚⩛⩜⩝⩞⩟⩠⩡⩡ĖļâŠĒâŠĒĖļâŠĢâŠĪâŠĨâŠĶ⊧âŠĻâŠĐ⊊âŠŦ⊎⊭âŠŪâŠŊâŠŊĖļ⊰⊰Ėļ⊹âŠēâŠģâŠīâŠĩâŠķ⊷âŠļâŠđ⊚âŠŧâŠžâŠ―âŠūâŠŋâŦ€âŦâŦ‚âŦƒâŦ„âŦ…âŦ…ĖļâŦ†âŦ†ĖļâŦ‡âŦˆâŦ‰âŦŠâŦ‹âŦŒâŦâŦŽâŦâŦâŦ‘âŦ’âŦ“âŦ”âŦ•âŦ–âŦ—âŦ˜âŦ™âŦ›âŦœâŦâŦĢâŦĪâŦŠâŦŠâŦŦâŦŦâŦŦâŦīâŦķâŦ·âŦļâŦđâŦšâŽ’âŽ“âŽ”âŽ•âŽ–âŽ—âŽ˜âŽ™âŽšâŽ›âŽœâŽâŽžâŽŸâŽ âŽĄâŽĒâŽĢâŽĪâŽĨâŽĶ⎧âŽĻâŽĐ⎊âŽŦ⎎⎭âŽŪâŽŊ⎰⎹âŽēâŽģâŽīâŽĩâŽķ⎷âŽļâŽđ⎚âŽŧâŽžâŽ―âŽūâŽŋâ­€â­â­‚â­ƒâ­„â­…â­†â­‡â­ˆâ­‰â­Šâ­‹â­Œâ­â­‘â­’â­“â­”âąžâą―ã€’ęœ›ęœœęœð€ðð‚ðƒð„ð…ð†ð‡ðˆð‰ðŠð‹ðŒððŽððð‘ð’ð“ð”ð•ð–ð—ð˜ð™ðšð›ðœððžðŸð ðĄðĒðĢðĪðĨðĶ𝐧ðĻðĐ𝐊ðŦ𝐎𝐭ðŪðŊð°ðąðēðģðīðĩðķ𝐷ðļðđ𝐚ðŧðžð―ðūðŋð‘€ð‘ð‘‚ð‘ƒð‘„ð‘…ð‘†ð‘‡ð‘ˆð‘‰ð‘Šð‘‹ð‘Œð‘ð‘Žð‘ð‘ð‘‘ð‘’ð‘“ð‘”ð‘–ð‘—ð‘˜ð‘™ð‘šð‘›ð‘œð‘ð‘žð‘Ÿð‘ ð‘Ąð‘Ēð‘Ģð‘Īð‘Ĩð‘Ķ𝑧ð‘Ļð‘Đ𝑊ð‘Ŧ𝑎𝑭ð‘Ūð‘Ŋð‘°ð‘ąð‘ēð‘ģð‘īð‘ĩð‘ķ𝑷ð‘ļð‘đ𝑚ð‘ŧð‘žð‘―ð‘ūð‘ŋ𝒀𝒁𝒂𝒃𝒄𝒅𝒆𝒇𝒈𝒉𝒊𝒋𝒌𝒍𝒎𝒏𝒐𝒑𝒒𝒓𝒔𝒕𝒖𝒗𝒘𝒙𝒚𝒛𝒜𝒞𝒟ð’Ēð’Ĩð’Ķð’Đ𝒊ð’Ŧ𝒎ð’Ūð’Ŋð’°ð’ąð’ēð’ģð’īð’ĩð’ķ𝒷ð’ļð’đð’ŧð’―ð’ūð’ŋð“€ð“ð“‚ð“ƒð“…ð“†ð“‡ð“ˆð“‰ð“Šð“‹ð“Œð“ð“Žð“ð“ð“‘ð“’ð““ð“”ð“•ð“–ð“—ð“˜ð“™ð“šð“›ð“œð“ð“žð“Ÿð“ ð“Ąð“Ēð“Ģð“Īð“Ĩð“Ķ𝓧ð“Ļð“Đ𝓊ð“Ŧ𝓎𝓭ð“Ūð“Ŋð“°ð“ąð“ēð“ģð“īð“ĩð“ķ𝓷ð“ļð“đ𝓚ð“ŧð“žð“―ð“ūð“ŋð”€ð”ð”‚ð”ƒð”„ð”…ð”‡ð”ˆð”‰ð”Šð”ð”Žð”ð”ð”‘ð”’ð”“ð””ð”–ð”—ð”˜ð”™ð”šð”›ð”œð”žð”Ÿð” ð”Ąð”Ēð”Ģð”Īð”Ĩð”Ķ𝔧ð”Ļð”Đ𝔊ð”Ŧ𝔎𝔭ð”Ūð”Ŋð”°ð”ąð”ēð”ģð”īð”ĩð”ķ𝔷ð”ļð”đð”ŧð”žð”―ð”ūð•€ð•ð•‚ð•ƒð•„ð•†ð•Šð•‹ð•Œð•ð•Žð•ð•ð•’ð•“ð•”ð••ð•–ð•—ð•˜ð•™ð•šð•›ð•œð•ð•žð•Ÿð• ð•Ąð•Ēð•Ģð•Īð•Ĩð•Ķ𝕧ð•Ļð•Đ𝕊ð•Ŧ𝕎𝕭ð•Ūð•Ŋð•°ð•ąð•ēð•ģð•īð•ĩð•ķ𝕷ð•ļð•đ𝕚ð•ŧð•žð•―ð•ūð•ŋð–€ð–ð–‚ð–ƒð–„ð–…ð–†ð–‡ð–ˆð–‰ð–Šð–‹ð–Œð–ð–Žð–ð–ð–‘ð–’ð–“ð–”ð–•ð––ð–—ð–˜ð–™ð–šð–›ð–œð–ð–žð–Ÿð– ð–Ąð–Ēð–Ģð–Īð–Ĩð–Ķ𝖧ð–Ļð–Đ𝖊ð–Ŧ𝖎𝖭ð–Ūð–Ŋð–°ð–ąð–ēð–ģð–īð–ĩð–ķ𝖷ð–ļð–đ𝖚ð–ŧð–žð–―ð–ūð–ŋð—€ð—ð—‚ð—ƒð—„ð—…ð—†ð—‡ð—ˆð—‰ð—Šð—‹ð—Œð—ð—Žð—ð—ð—‘ð—’ð—“ð—”ð—•ð—–ð——ð—˜ð—™ð—šð—›ð—œð—ð—žð—Ÿð— ð—Ąð—Ēð—Ģð—Īð—Ĩð—Ķ𝗧ð—Ļð—Đ𝗊ð—Ŧ𝗎𝗭ð—Ūð—Ŋð—°ð—ąð—ēð—ģð—īð—ĩð—ķ𝗷ð—ļð—đ𝗚ð—ŧð—žð—―ð—ūð—ŋð˜€ð˜ð˜‚ð˜ƒð˜„ð˜…ð˜†ð˜‡ð˜ˆð˜‰ð˜Šð˜‹ð˜Œð˜ð˜Žð˜ð˜ð˜‘ð˜’ð˜“ð˜”ð˜•ð˜–ð˜—ð˜˜ð˜™ð˜šð˜›ð˜œð˜ð˜žð˜Ÿð˜ ð˜Ąð˜Ēð˜Ģð˜Īð˜Ĩð˜Ķ𝘧ð˜Ļð˜Đ𝘊ð˜Ŧ𝘎𝘭ð˜Ūð˜Ŋð˜°ð˜ąð˜ēð˜ģð˜īð˜ĩð˜ķ𝘷ð˜ļð˜đ𝘚ð˜ŧð˜žð˜―ð˜ūð˜ŋð™€ð™ð™‚ð™ƒð™„ð™…ð™†ð™‡ð™ˆð™‰ð™Šð™‹ð™Œð™ð™Žð™ð™ð™‘ð™’ð™“ð™”ð™•ð™–ð™—ð™˜ð™™ð™šð™›ð™œð™ð™žð™Ÿð™ ð™Ąð™Ēð™Ģð™Īð™Ĩð™Ķ𝙧ð™Ļð™Đ𝙊ð™Ŧ𝙎𝙭ð™Ūð™Ŋð™°ð™ąð™ēð™ģð™īð™ĩð™ķ𝙷ð™ļð™đ𝙚ð™ŧð™žð™―ð™ūð™ŋðš€ðšðš‚ðšƒðš„ðš…ðš†ðš‡ðšˆðš‰ðšŠðš‹ðšŒðšðšŽðšðšðš‘ðš’ðš“ðš”ðš•ðš–ðš—ðš˜ðš™ðššðš›ðšœðšðšžðšŸðš ðšĄðšĒðšĢðšĪðšĨðšĻðšĐ𝚊ðšŦ𝚎𝚭ðšŪðšŊðš°ðšąðšēðšģðšīðšĩðšķ𝚷ðšļðšđ𝚚ðšŧðšžðš―ðšūðšŋð›€ð›ð›‚ð›ƒð›„ð›…ð›†ð›‡ð›ˆð›‰ð›Šð›‹ð›Œð›ð›Žð›ð›ð›‘ð›’ð›“ð›”ð›•ð›–ð›—ð›˜ð›™ð›šð››ð›œð›ð›žð›Ÿð› ð›Ąð›Ēð›Ģð›Īð›Ĩð›Ķ𝛧ð›Ļð›Đ𝛊ð›Ŧ𝛎𝛭ð›Ūð›Ŋð›°ð›ąð›ēð›ģð›īð›ĩð›ķ𝛷ð›ļð›đ𝛚ð›ŧð›žð›―ð›ūð›ŋðœ€ðœðœ‚ðœƒðœ„ðœ…ðœ†ðœ‡ðœˆðœ‰ðœŠðœ‹ðœŒðœðœŽðœðœðœ‘ðœ’ðœ“ðœ”ðœ•ðœ–ðœ—ðœ˜ðœ™ðœšðœ›ðœœðœðœžðœŸðœ ðœĄðœĒðœĢðœĪðœĨðœĶ𝜧ðœĻðœĐ𝜊ðœŦ𝜎𝜭ðœŪðœŊðœ°ðœąðœēðœģðœīðœĩðœķ𝜷ðœļðœđ𝜚ðœŧðœžðœ―ðœūðœŋð€ðð‚ðƒð„ð…ð†ð‡ðˆð‰ðŠð‹ðŒððŽððð‘ð’ð“ð”ð•ð–ð—ð˜ð™ðšð›ðœððžðŸð ðĄðĒðĢðĪðĨðĶ𝝧ðĻðĐ𝝊ðŦ𝝎𝝭ðŪðŊð°ðąðēðģðīðĩðķ𝝷ðļðđ𝝚ðŧðžð―ðūðŋðž€ðžðž‚ðžƒðž„ðž…ðž†ðž‡ðžˆðž‰ðžŠðž‹ðžŒðžðžŽðžðžðž‘ðž’ðž“ðž”ðž•ðž–ðž—ðž˜ðž™ðžšðž›ðžœðžðžžðžŸðž ðžĄðžĒðžĢðžĪðžĨðžĶ𝞧ðžĻðžĐ𝞊ðžŦ𝞎𝞭ðžŪðžŊðž°ðžąðžēðžģðžīðžĩðžķ𝞷ðžļðžđ𝞚ðžŧðžžðž―ðžūðžŋðŸ€ðŸðŸ‚ðŸƒðŸ„ðŸ…ðŸ†ðŸ‡ðŸˆðŸ‰ðŸŠðŸ‹ðŸŽðŸðŸðŸ‘ðŸ’ðŸ“ðŸ”ðŸ•ðŸ–ðŸ—ðŸ˜ðŸ™ðŸšðŸ›ðŸœðŸðŸžðŸŸðŸ ðŸĄðŸĒðŸĢðŸĪðŸĨðŸĶ𝟧ðŸĻðŸĐ𝟊ðŸŦ𝟎𝟭ðŸŪðŸŊðŸ°ðŸąðŸēðŸģðŸīðŸĩðŸķ𝟷ðŸļðŸđ𝟚ðŸŧðŸžðŸ―ðŸūðŸŋ