FinitePosets.FinitePosets
— ModuleThis package deals with finite posets.
There are two types of posets. A "canonical poset" or CPoset
is on the elements 1:n
where n=length(P)
. A Poset
is on a given list of elements which can be of any type. A Poset
internally contains aCPoset
which works on the indices of the elements, which is more efficient than working with the elements themselves. For efficiency, many functions work on the internal CPoset
by transforming their input to indices and their output to elements.
A CPoset
p
contains one of the following data:
hasse(p)
: a list representing the Hasse diagram of the poset: thei
-th entry is the list of elements which cover (are immediate successors of)i
, that is the list ofj
such thati<j
and there is nok
such thati<k<j
.incidence(p)
: a boolean matrix such thatincidence[i,j]==true
iffi<=j
. This is sometimes called the ζ-matrix of the poset.
Some computations work better on the incidence matrix, and some others on the Hasse diagram. If missing for a computation, one of the above data is computed from the other. This may take some substantial time for large posets.
There are several ways of defining a poset. By entering the Hasse diagram:
julia> p=CPoset([[2,3],[4],[4],Int[]])
1<2,3<4
As seen above, p
is shown as a list of covering maximal chains; elements which are equivalent for the poset are printed together separated by commas.
julia> length(p) # the number of elements of `p`
4
julia> incidence(p)
4×4 Matrix{Bool}:
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1
julia> linear_extension(p) # a total order compatible with p
4-element Vector{Int64}:
1
2
3
4
A Poset
is constructed from a CPoset
and a list of elements
julia> P=Poset(p,[:a,:b,:c,:d])
a<b,c<d
julia> P.C # the CPoset attached to P
1<2,3<4
A convenient constructor for Poset
s takes a function representing isless
for the poset and the list of elements and constructs the poset from the incidence matrix, computed by applying the function to each pair of elements. For isless
one can give either a function implementing <
or a function implementing ≤
(it is or
-ed with ==
in any case).
julia> l=vec(collect(Iterators.product(1:2,1:2)))
4-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(2, 1)
(1, 2)
(2, 2)
julia> P=Poset((x,y)->all(map(<=,x,y)),l)
(1, 1)<(2, 1),(1, 2)<(2, 2)
julia> eltype(P) # the type of the elements of P
Tuple{Int64, Int64}
julia> summary(P) # useful for big posets
"Poset{Tuple{Int64, Int64}} of length 4"
A poset can also be constructed from an incidence matrix so the last example could also be entered as
julia> P=Poset(CPoset([all(map(<=,x,y)) for x in l, y in l]),l)
(1, 1)<(2, 1),(1, 2)<(2, 2)
Flexibility on printing a Poset
is obtained by setting the function show_element
which takes as arguments an IO
, the poset, and the index of the element to print:
julia> P.show_element=(io,p,n)->join(io,p.elements[n],".");
julia> P
1.1<2.1,1.2<2.2
julia> delete!(P,:show_element); # back to default
The above fancy printing applies only when printing at the REPL or in pluto or Jupyter. The default printing gives a form which can be input back in Julia
julia> print(P)
Poset(CPoset([[2, 3], [4], [4], Int64[]]),[(1, 1), (2, 1), (1, 2), (2, 2)])
A poset can be specified by a list of tuples specifying order relations. The transitive closure of these relations is computed, resulting in an incidence matrix from which the poset is constructed. The elements of the poset, if not specified separately, are all the elements that appear in the tuples.
julia> Poset([(:a,:b),(:c,:d)])
a<b
c<d
julia> CPoset([(1,3),(2,5)]) # the CPoset is on 1:maximum(entries)
4
1<3
2<5
To get the order relation ≤
of the poset p
between elements i
and j
just call ≤(p,i,j)
.
julia> ≤(P,(1,1),(2,1))
true
julia> ≤(P.C,1,2) # the same
true
Intervals in a poset can be computed with strict or not bounds.
julia> interval(P,≤,(1,2)) # elements below (1,2)
2-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(1, 2)
julia> interval(P,≥,(1,2)) # elements above (1,2)
2-element Vector{Tuple{Int64, Int64}}:
(1, 2)
(2, 2)
julia> interval(P,<,(1,2)) # elements strictly below (1,2)
1-element Vector{Tuple{Int64, Int64}}:
(1, 1)
julia> interval(P,≥,(2,1),≤,(2,2)) # elements between (2,1) and (2,2)
2-element Vector{Tuple{Int64, Int64}}:
(2, 1)
(2, 2)
julia> interval(P,>,(1,1),<,(2,2)) # elements strictly between
2-element Vector{Tuple{Int64, Int64}}:
(2, 1)
(1, 2)
julia> interval(P.C,>,1,<,4) # in terms of indices
2-element Vector{Int64}:
2
3
A sample of other functions available on posets:
julia> maximal_chains(P)
2-element Vector{Vector{Tuple{Int64, Int64}}}:
[(1, 1), (2, 1), (2, 2)]
[(1, 1), (1, 2), (2, 2)]
julia> height(P) # the length of a maximal chain
3
julia> moebiusmatrix(P)
4×4 Matrix{Int64}:
1 -1 -1 1
0 1 0 -1
0 0 1 -1
0 0 0 1
julia> minima(P)
1-element Vector{Tuple{Int64, Int64}}:
(1, 1)
julia> maxima(P)
1-element Vector{Tuple{Int64, Int64}}:
(2, 2)
julia> Q=CPoset(:chain,3)
1<2<3
julia> P1=Poset(Q) # transformed to a Poset with elements 1:3
1<2<3
julia> P⊕ P1 # the ordinal sum
(1, 1)<(2, 1),(1, 2)<(2, 2)<1<2<3
julia> P1*P1
(1, 1)<(2, 1)<(3, 1)<(3, 2)<(3, 3)
(1, 1)<(1, 2)<(2, 2)<(3, 2)
(2, 1)<(2, 2)
(1, 2)<(1, 3)<(2, 3)<(3, 3)
(2, 2)<(2, 3)
julia> P1⊗ P1 # the ordinal product
(1, 1)<(1, 2)<(1, 3)<(2, 1)<(2, 2)<(2, 3)<(3, 1)<(3, 2)<(3, 3)
Finally showpic(p)
where p
is a CPoset
or a Poset
gives a graphical display of the poset provided you have the command dot
of graphviz
installed. It then uses the xdg "open" command to open the resulting .png
file. This works on Linux and MacOs but I could not try it on Windows.
see the on-line help on ⊕, ⊗, +, *, chains, chainpoly, covering_chains, coxetermatrix, dual, hasse, height, incidence, induced, interval, isjoinlattice, ismeetlattice, linear_extension, maxima, maximal_chains, minima, moebius, moebiusmatrix, partition, showpic, transitive_closure
for more information
FinitePosets.CPoset
— MethodCPoset(f::Function,n::integer)
creates the Poset
on 1:n
with order given by function f
.
julia> CPoset((x,y)->y%x==0,8) # the divisibility poset
1<5,7
1<2<4<8
1<3<6
2<6
FinitePosets.CPoset
— MethodCPoset(m::Matrix{Bool})
Creates a poset from an incidence matrix m
, that is m[i,j]==true
if and only if i≤j
in the poset,
julia> CPoset(Bool[1 1 1 1 1;0 1 0 1 1;0 0 1 1 1;0 0 0 1 0;0 0 0 0 1])
1<2,3<4,5
FinitePosets.CPoset
— MethodCPoset(:chain,n)
a chain on1:n
CPoset(:antichain,n)
an antichain on1:n
CPoset(:diamond,n)
a diamond poset on1:n
FinitePosets.CPoset
— MethodCPoset(h::Vector{<:Vector{<:Integer}})
Creates a poset from a Hasse diagram given as a Vector
whose i
-th entry is the list of indices which are immediate successors (covers) of the i
-th element, that is h[i]
is the list of j
such that i<j
in the poset and such that there is no k
such that i<k<j
.
julia> CPoset([[2,3],[4,5],[4,5],Int[],Int[]])
1<2,3<4,5
FinitePosets.CPoset
— MethodCPoset(covers::Vector{Tuple{Int,Int}})
creates a poset representing the transitive closure of the given relations. The poset is on 1:n
where n
is the maximum number which appears in the relations.
julia> CPoset([(6,2),(5,1)])
3,4
5<1
6<2
FinitePosets.Poset
— MethodPoset(f::Function,e::AbstractVector)
creates a Poset
with elements e
and order between two elements given by function f
.
julia> Poset((x,y)->all(x.≤y),vec(collect(Iterators.product(1:2,1:3))))
(1, 1)<(2, 1)<(2, 2)<(2, 3)
(1, 1)<(1, 2)<(2, 2)
(1, 2)<(1, 3)<(2, 3)
FinitePosets.Poset
— MethodPoset(:chain,e)
a chain with elementse
Poset(:antichain,e)
an antichain with elementse
Poset(:powerset,n::Integer)
the powerset of the set1:n
with inclusion
julia> p=Poset(:powerset,3);p.show_element=(io,p,n)->join(io,p.elements[n]);
julia> p
<1<12<123
<2<12
<3<13<123
1<13
2<23<123
3<23
Poset(:powerset,e)
the powerset of the sete
with inclusionPoset(:partitionsdominance,n)
the poset of partitions ofn
with dominance order
julia> Poset(:partitionsdominance,5)
[1, 1, 1, 1, 1]<[2, 1, 1, 1]<[2, 2, 1]<[3, 1, 1]<[3, 2]<[4, 1]<[5]
FinitePosets.Poset
— MethodPoset(covers::Vector{Tuple{T,T}}) where T
creates a poset representing the transitive closure of the given relations. The poset is on the elements which appear in the relations.
julia> Poset([(:a,:b),(:d,:c)])
a<b
d<c
FinitePosets.Poset
— MethodPoset(p::CPoset,e::AbstractVector=1:length(p))
creates a Poset
with order specified by p
and elements e
.
julia> Poset(CPoset([[2,3],[4],[4],Int[]]),[:a,:b,:c,:d])
a<b,c<d
with no second argument transforms a CPoset
into a Poset
.
Base.:*
— MethodP*Q
returns the product of two CPoset
s or of two Poset
s.
julia> CPoset(:chain,2)*CPoset(:chain,3)
1<2<3<6
1<4<5<6
2<5
julia> Poset(:chain,[1,2])*Poset(:chain,[:a,:b,:c])
(1, :a)<(2, :a)<(1, :b)<(2, :c)
(1, :a)<(2, :b)<(1, :c)<(2, :c)
(2, :a)<(1, :c)
Base.:+
— MethodP+Q
returns the sum of two CPoset
s or of two Poset
s.
julia> CPoset(:chain,2)+CPoset(:chain,3)
1<2
3<4<5
julia> Poset(:chain,[1,2])+Poset(:chain,[:a,:b,:c])
1<2
a<b<c
Combinat.moebius
— Functionmoebius(P::CPoset,y=first(maxima(P)))
the vector of values μ(x,y)
of the Moebius function of P
for x
varying. Here is an example giving the ususal Moebius function on integers.
julia> p=CPoset((i,j)->i%j==0,1:8)
5,7<1
6<2<1
6<3<1
8<4<2
julia> moebius(p)
8-element Vector{Int64}:
1
-1
-1
0
-1
1
-1
0
FinitePosets.:⊕
— MethodP⊕ Q
returns the ordinal sum of two CPoset
s or of two Poset
s.
julia> CPoset(:chain,2)⊕ CPoset(:chain,3)
1<2<3<4<5
julia> Poset(:chain,[1,2])⊕ Poset(:chain,[:a,:b,:c])
1<2<a<b<c
FinitePosets.:⊗
— MethodP⊗ Q
returns the ordinal product of two CPoset
s or of two Poset
s.
julia> CPoset(:chain,2)⊗ CPoset(:chain,3)
1<3<5<2<4<6
julia> Poset(:chain,[1,2])⊗ Poset(:chain,[:a,:b,:c])
(1, :a)<(1, :b)<(1, :c)<(2, :a)<(2, :b)<(2, :c)
FinitePosets.chainpoly
— Methodchainspoly(P)
the chain polynomial of the Poset
or CPoset
, returned as the list of its coefficients.
julia> chainpoly(Poset(:powerset,3))
5-element Vector{Int64}:
1
8
19
18
6
FinitePosets.chains
— Methodchains(P)
the chains of the Poset
or CPoset
.
julia> chains(CPoset(:chain,3))
8-element Vector{Vector{Int64}}:
[]
[1]
[2]
[3]
[1, 2]
[1, 3]
[2, 3]
[1, 2, 3]
FinitePosets.covering_chains
— Methodcovering_chains(P::CPoset)
A (greedy: the first is longest possible) list of covering chains for P.
FinitePosets.coxetermatrix
— Methodcoxetermatrix(p)
the Coxeter matrix of the Poset
or CPoset
, defined as -m*transpose(inv(m))
where m
is the ζ or incidence matrix.
julia> coxetermatrix(CPoset(:diamond,5))
5×5 Matrix{Int64}:
0 -1 -1 -1 -2
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
-1 -1 -1 -1 -1
FinitePosets.dot
— Methoddot(p)
gives a rendering of the Hasse diagram of the Poset
or CPoset
in the graphical language dot
.
FinitePosets.dual
— Methoddual(P)
the dual poset to the Poset
or CPoset
(the order relation is reversed).
julia> p=CPoset((i,j)->i%4<j%4,8)
4,8<1,5<2,6<3,7
julia> dual(p)
3,7<2,6<1,5<4,8
FinitePosets.hasse
— Methodhasse(m::Matrix{Bool})
Given an incidence matrix for a poset returns the corresponding Hasse diagram.
julia> m=incidence(CPoset(:diamond,5))
5×5 Matrix{Bool}:
1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1
julia> hasse(m)
5-element Vector{Vector{Int64}}:
[2, 3, 4]
[5]
[5]
[5]
[]
FinitePosets.hasse
— Methodhasse(P::CPoset)
the Hasse diagram of P
.
julia> p=CPoset((i,j)->j%i==0,5)
1<3,5
1<2<4
julia> hasse(p)
5-element Vector{Vector{Int64}}:
[2, 3, 5]
[4]
[]
[]
[]
hasse(P::Poset)
returns hasse(P.C)
.
FinitePosets.height
— Methodheight(P)
the height of the Poset
or CPoset
(the longest length of a chain).
FinitePosets.incidence
— Methodincidence(P::CPoset)
returns the incidence matrix (also called the ζ matrix) of P
.
julia> p=CPoset([i==6 ? Int[] : [i+1] for i in 1:6])
1<2<3<4<5<6
julia> incidence(p)
6×6 Matrix{Bool}:
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
incidence(P::Poset)
returns incidence(P.C)
.
FinitePosets.induced
— Methodinduced(P,S)
returns the subposet induced by P
on S
, a sublist of P.elements
if P isa Poset
or a subset of 1:length(P)
if P isa CPoset
. Note that the sublist S
does not have to be in the same order as P.elements
, so this can be just used to renumber the elements of P
.
julia> p=CPoset((i,j)->i%4<j%4,8)
4,8<1,5<2,6<3,7
julia> induced(p,2:6) # indices are renumbered
3<4<1,5<2
julia> induced(Poset(p),2:6) # elements are kept
4<5<2,6<3
FinitePosets.interval
— Methodinterval(P,f::Function,a)
interval(P,f::Function,a,g::Function,b)
returns an interval in the Poset
or CPoset
given by P
. The function f
must be one of the comparison functions ≤, <, ≥, >
. In the first form it returns the interval between a
and one end (or the other, depending on the comparison function). In the second form it returns the intersection of the intervals interval(P,f,a)
and interval(P,g,b)
.
julia> l=vec(collect(Iterators.product(1:2,1:2)))
4-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(2, 1)
(1, 2)
(2, 2)
julia> P=Poset((x,y)->all(map(<=,x,y)),l)
(1, 1)<(2, 1),(1, 2)<(2, 2)
julia> interval(P,≤,(1,2)) # elements below (1,2)
2-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(1, 2)
julia> interval(P,≥,(1,2)) # elements above (1,2)
2-element Vector{Tuple{Int64, Int64}}:
(1, 2)
(2, 2)
julia> interval(P,<,(1,2)) # elements strictly below (1,2)
1-element Vector{Tuple{Int64, Int64}}:
(1, 1)
julia> interval(P,≥,(2,1),≤,(2,2)) # elements between (2,1) and (2,2)
2-element Vector{Tuple{Int64, Int64}}:
(2, 1)
(2, 2)
julia> interval(P,>,(1,1),<,(2,2)) # elements strictly between
2-element Vector{Tuple{Int64, Int64}}:
(2, 1)
(1, 2)
julia> interval(P.C,>,1,<,4) # in terms of indices
2-element Vector{Int64}:
2
3
FinitePosets.isjoinlattice
— Methodisjoinlattice(P::CPoset)
returns true
if P
is a join semilattice, that is any two elements of P
have a unique smallest upper bound; returns false
otherwise.
julia> p=CPoset((i,j)->j%i==0,8)
1<5,7
1<2<4<8
1<3<6
2<6
julia> isjoinlattice(p)
false
isjoinlattice(P::Poset)
returns isjoinlattice(P.C)
FinitePosets.ismeetlattice
— Methodismeetlattice(P)
returns true
if P
is a meet semilattice, that is any two elements of P
have a unique highest lower bound; returns false
otherwise.
julia> p=CPoset((i,j)->j%i==0,8)
1<5,7
1<2<4<8
1<3<6
2<6
julia> ismeetlattice(p)
true
ismeetlattice(P::Poset)
returns ismeetlattice(P.C)
FinitePosets.linear_extension
— Methodlinear_extension(P::CPoset)
returns a linear extension of the CPoset
, that is a vector l
containing a permutation of the integers 1:length(P)
such that if i<j
in P
(that is incidence(P)[i,j]
is true
), then i
is before j
in l
. This is also called a topological sort of P
.
julia> p=CPoset((i,j)->j%i==0,6) # divisibility poset on 1:6
1<5
1<2<4
1<3<6
2<6
julia> linear_extension(p)
6-element Vector{Int64}:
1
2
3
5
4
6
linear_extension(P::Poset)
returns a linear extension of P.C
.
FinitePosets.maxima
— Methodmaxima(P)
the maximal elements of the Poset
or CPoset
julia> p=CPoset([[3],[3],[4,5],Int[],Int[]])
1,2<3<4,5
julia> maxima(p)
2-element Vector{Int64}:
4
5
FinitePosets.maximal_chains
— Methodmaximal_chains(P)
the maximal chains of the Poset
or CPoset
.
julia> p=Poset([(:a,:b),(:a,:c),(:b,:d),(:c,:d)])
a<b,c<d
julia> maximal_chains(p)
2-element Vector{Vector{Symbol}}:
[:a, :b, :d]
[:a, :c, :d]
julia> maximal_chains(p.C)
2-element Vector{Vector{Int64}}:
[1, 2, 4]
[1, 3, 4]
FinitePosets.minima
— Methodminima(P)
the minimal elements of the Poset
or CPoset
julia> p=CPoset([[3],[3],[4,5],Int[],Int[]])
1,2<3<4,5
julia> minima(p)
2-element Vector{Int64}:
1
2
FinitePosets.moebiusmatrix
— Methodmoebiusmatrix(P::CPoset)
the matrix of the Moebius function μ(x,y)
(the inverse of the ζ or incidence matrix)
julia> moebiusmatrix(CPoset(:diamond,5))
5×5 Matrix{Int64}:
1 -1 -1 -1 2
0 1 0 0 -1
0 0 1 0 -1
0 0 0 1 -1
0 0 0 0 1
moebiusmatrix(P::Poset)
returns moebiusmatrix(P.C)
FinitePosets.partition
— Methodpartition(P::CPoset)
returns the partition of 1:length(P)
induced by the equivalence relation associated to P
; that is, i
and j
are in the same part of the partition if the k
such that i<k
and j<k
are the same as well as the k
such that k<i
and k<j
.
julia> p=CPoset([i==j || i%4<j%4 for i in 1:8, j in 1:8])
4,8<1,5<2,6<3,7
julia> partition(p)
4-element Vector{Vector{Int64}}:
[4, 8]
[2, 6]
[3, 7]
[1, 5]
partition(P::Poset)
returns partition(P.C)
FinitePosets.showpic
— Methodshowpic(p;opt...)
display a graphical representation of the Hasse diagram of the Poset
or CPoset
using the commands dot
and open
. If p isa Poset
it is possible to give as keyword aguments a list of IO
properties which will be forwarded to the show_element
method of p
.
FinitePosets.transitive_closure
— Methodtransitive_closure(M)
transitive_closure!(M)
M
should be a square boolean matrix representing a relation; transitive_closure
returns a boolean matrix representing the transitive closure of this relation; transitive_closure!
modifies M
in place, doing no allocations. The transitive closure is computed by the Floyd-Warshall algorithm, which is quite fast even for large matrices.
julia> m=[j-i in [0,1] for i in 1:5, j in 1:5]
5×5 Matrix{Bool}:
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1
julia>transitive_closure(m)
5×5 Matrix{Bool}:
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1