Discretization

Meshes.discretizeFunction
discretize(geometry, method)

Discretize geometry with discretization method.

Meshes.discretizewithinFunction
discretizewithin(boundary, method)

Discretize geometry within boundary with boundary discretization method.

Meshes.triangulateFunction
triangulate(object)

Triangulate object of parametric dimension 2 into triangles using an appropriate triangulation method.

FanTriangulation

hexagon = Hexagon((0.,0.), (1.,0.), (1.,1.),
                  (0.75,1.5), (0.25,1.5), (0.,1.))

mesh = discretize(hexagon, FanTriangulation())

fig = Mke.Figure(resolution = (800, 400))
viz(fig[1,1], hexagon)
viz(fig[1,2], mesh, showfacets = true)
fig

RegularDiscretization

Meshes.RegularDiscretizationType
RegularDiscretization(n1, n2, ..., np)

A method to discretize primitive geometries using regular samples along each parametric dimension. The number of samples n1, n2, ..., np is passed to RegularSampling.

sphere = Sphere((0.,0.,0.), 1.)

mesh = discretize(sphere, RegularDiscretization(10,10))

fig = Mke.Figure(resolution = (400, 400))
viz(fig[1,1], mesh, showfacets = true)
fig

Dehn1899

Meshes.Dehn1899Type
Dehn1899()

Max Dehns' triangulation proved in 1899.

The algorithm is described in the first chapter of Devadoss & Rourke 2011, and is based on a theorem derived in 1899 by the German mathematician Max Dehn. See https://en.wikipedia.org/wiki/Twoearstheorem.

Because the algorithm relies on recursion, it is mostly appropriate for polygons with small number of vertices.

References

# polygonal area
polyarea = PolyArea([(0.22926679, 0.47329807), (0.23094065, 0.44913536), (0.2569517, 0.38217533),
                     (0.3072999, 0.272418), (0.34814754, 0.18421611), (0.37949452, 0.11756973),
                     (0.4013409, 0.07247882), (0.41368666, 0.048943404), (0.42597583, 0.031655528),
                     (0.4382084, 0.0206152), (0.45038435, 0.015822414), (0.4625037, 0.017277176),
                     (0.47175184, 0.02439156), (0.47812873, 0.03716557), (0.4816344, 0.055599205),
                     (0.48226887, 0.07969247), (0.48172843, 0.10446181), (0.4800131, 0.12990724),
                     (0.47712287, 0.15602873), (0.47305775, 0.18282633), (0.47093934, 0.20558843),
                     (0.47076762, 0.22431506), (0.47254258, 0.23900622), (0.47626427, 0.24966191),
                     (0.47768936, 0.25845313), (0.47681788, 0.26537988), (0.4736498, 0.27044216),
                     (0.46818516, 0.27363995), (0.4613889, 0.27232954), (0.45326096, 0.2665109),
                     (0.44380143, 0.256184), (0.43301025, 0.24134888), (0.4246466, 0.22978415),
                     (0.41871038, 0.22148979), (0.4152017, 0.21646582), (0.4141205, 0.21471222),
                     (0.41227448, 0.21589448), (0.40966362, 0.22001258), (0.40628797, 0.22706655),
                     (0.40214747, 0.23705636), (0.40200475, 0.24653101), (0.40585983, 0.25549048),
                     (0.41371268, 0.2639348), (0.4255633, 0.2718639), (0.4378565, 0.28495985),
                     (0.4505922, 0.30322257), (0.46377045, 0.32665208), (0.47739124, 0.35524836),
                     (0.5046394, 0.36442512), (0.5455148, 0.35418236), (0.60001767, 0.32452005),
                     (0.66814786, 0.27543822), (0.7186763, 0.24664374), (0.75160307, 0.23813659),
                     (0.76692814, 0.2499168), (0.7646515, 0.28198436), (0.7769703, 0.29925033),
                     (0.8038847, 0.3017147), (0.84539455, 0.28937748), (0.9015, 0.26223865),
                     (0.94408435, 0.24899776), (0.9731477, 0.24965483), (0.98869, 0.26420987),
                     (0.9907113, 0.29266283), (0.9849871, 0.31338844), (0.97151726, 0.32638666),
                     (0.950302, 0.3316575), (0.9213412, 0.32920095), (0.8798396, 0.34078467),
                     (0.8257972, 0.36640862), (0.7592141, 0.40607283), (0.6800901, 0.4597773),
                     (0.6450007, 0.49104902), (0.6539457, 0.49988794), (0.7069251, 0.48629412),
                     (0.803939, 0.45026752), (0.877913, 0.4226481), (0.9288472, 0.40343583),
                     (0.9567415, 0.39263073), (0.961596, 0.39023277), (0.9419039, 0.40523484),
                     (0.89766514, 0.43763688), (0.8288798, 0.48743892), (0.7355478, 0.55464095),
                     (0.6655121, 0.60063523), (0.6187727, 0.6254217), (0.5953296, 0.62900037),
                     (0.5951828, 0.6113712), (0.57516366, 0.60261106), (0.53527224, 0.6027198),
                     (0.4755085, 0.6116975), (0.3958725, 0.6295441), (0.33913234, 0.6398651),
                     (0.30528808, 0.6426605), (0.2943397, 0.6379303), (0.30628717, 0.6256744),
                     (0.32149008, 0.6093727), (0.33994842, 0.5890249), (0.36166218, 0.5646312),
                     (0.38663134, 0.5361916), (0.3919681, 0.520893), (0.3776725, 0.5187355),
                     (0.34374446, 0.52971905), (0.29018405, 0.5538437), (0.25439468, 0.5678829),
                     (0.2363764, 0.5718367), (0.23612918, 0.56570506), (0.25365302, 0.549488),
                     (0.2733971, 0.5246488), (0.29536137, 0.49118724), (0.3195459, 0.4491035),
                     (0.34595063, 0.39839754), (0.3647463, 0.3590396), (0.37593287, 0.33102974),
                     (0.37951034, 0.31436795), (0.37547874, 0.30905423), (0.36070493, 0.3204269),
                     (0.33518887, 0.348486), (0.29893062, 0.3932315), (0.25193012, 0.45466346),
                     (0.22926679, 0.47329807)])

mesh = discretize(polyarea, Dehn1899())

fig = Mke.Figure(resolution = (800, 400))
viz(fig[1,1], polyarea)
viz(fig[1,2], mesh, showfacets = true)
fig

FIST

Meshes.FISTType
FIST([rng]; shuffle=true)

Fast Industrial-Strength Triangulation (FIST) of polygons.

This triangulation method is the method behind the famous Mapbox's Earcut library. It is based on a ear clipping algorithm adapted for complex n-gons with holes. It has O(n²) time complexity where n is the number of vertices. In practice it is very efficient due to heuristics implemented in the algorithm.

The option shuffle is used to shuffle the order in which ears are clipped. It improves the quality of the triangles, which can be very sliver otherwise. Optionally, specify the random number generator rng.

References

mesh = discretize(polyarea, FIST())

fig = Mke.Figure(resolution = (800, 400))
viz(fig[1,1], polyarea)
viz(fig[1,2], mesh, showfacets = true)
fig

As can be seen in the following example, all discretization methods for Polygon automatically work in the presence of holes:

outer = [(0.18142937, 0.54681134), (0.38282228, 0.107781954), (0.43220532, 0.013640274),
         (0.48068276, 0.019459315), (0.48322055, 0.11583236), (0.46696007, 0.2230227),
         (0.48184678, 0.2656454), (0.45998818, 0.2784367), (0.4168235, 0.2190962),
         (0.4124987, 0.21208182), (0.39593673, 0.2520411), (0.44333926, 0.28375763),
         (0.4978224, 0.3981428), (0.7703431, 0.20181546), (0.7612364, 0.33008572),
         (0.9856581, 0.2215304), (0.99374324, 0.3353423), (0.9688778, 0.38663587),
         (0.59554976, 0.655444), (0.59496254, 0.58492756), (0.27641845, 0.656314),
         (0.3242084, 0.6072907), (0.42408508, 0.49353212), (0.20984341, 0.59003067),
         (0.18142937, 0.54681134)]

inners = [[(0.87789994, 0.32551613), (0.5614043, 0.540334), (0.9494598, 0.39622766), (0.87789994, 0.32551613)],
          [(0.2799388, 0.52516246), (0.38555774, 0.32233855), (0.36943135, 0.30108362), (0.2799388, 0.52516246)]]

polyarea = PolyArea(outer, inners)

mesh = discretize(polyarea, FIST())

fig = Mke.Figure(resolution = (800, 400))
viz(fig[1,1], polyarea)
viz(fig[1,2], mesh, showfacets = true)
fig