BifurcationInference.BranchPoint
— Typebranch = Branch{V,T}()
Initialises vector of named tuples that contain the following fields
Fields
z
steady state solutions(u,p)
along branchλ
vector of eigenvaluesds
arclength steps sizes between continuation pointsbif
boolean telling us if point is a bifurcation
BifurcationInference.StateSpace
— Methoddata = StateSpace( dimension, parameter, targets; nRoots=2, eltype=Float64 )
Define state space with targets to be used in optimisation
Positional Arguments
dimension
dimensionality of state spaceu
parameter
one dimensional bifurcation parameter gridp
targets
vector of target locations
Keyword Arguments
nRoots
number of roots to continue solutions fromeltype
numeric type for vector elements
Struct Fields
roots
vector of rootsF(u.p)=0
to continue solutions fromparameter
one dimensional bifurcation parameter gridp
targets
vector of target locations
BifurcationInference.deflationContinuation
— Methoddeflation continuation method
BifurcationInference.findRoots!
— Methodroot finding with newton deflation method