CallableExpressions
JuliaHub links
The package is registered: https://juliahub.com/ui/Packages/General/CallableExpressions
The JuliaHub docs for this package: https://docs.juliahub.com/General/CallableExpressions/stable/
About
A simple Julia package for representing and evaluating expression-like trees. Each vertex of the tree may contain:
- A constant: an arbitrary Julia value that is assumed not to depend on any variables. A leaf vertex.
- A variable: a wrapper around a symbol, used for binding a value to some vertices of the tree after the tree's construction. A leaf vertex.
- A tree. A non-leaf vertex.
Each non-leaf vertex contains a salient value and a collection. The former is interpreted as an operation, while the latter is at the same time interpreted as the child vertices of the tree and as the arguments of the operation. An expression is evaluated by calling the operation.
To evaluate an expression, a value must be provided for each variable.
Partial evaluation is accomplished using the expression_map_matched
function, see below.
The implementations
Constants:
DynamicConstant
: stores an arbitrary valueStaticConstant
: stores an arbitrary value in the type domain
Variables:
DynamicVariable
: stores a symbolStaticVariable
: stores a symbol in the type domain
Expression trees:
DynamicExpression
: a recursive data structure storing an operation and its arguments. The operation is stored as an object exposing several possible operations as properties, and a symbol that selects one of the available operations.StaticExpression
: a recursive data structure storing an operation and its arguments.MoreStaticExpression
: a recursive data structure storing an operation and its arguments. The operation is stored in the type domain.
Dynamic*
and *Static*
implementation variants are always interchangeable, except that
StaticConstant
may not wrap values that Julia doesn't allow moving to the type domain. It's
possible to mix-and-match Dynamic*
and *Static*
arbitrarily.
NB: if the terms type domain or type stability are not clear, just use the Dynamic*
version of each implementation. In some cases it will make sense to partially switch to a
*Static*
implementation as a performance optimization.
Type aliases
The ExpressionTypeAliases
module exports some type aliases that might be useful:
julia> using CallableExpressions
julia> ExpressionTypeAliases.Constant
Union{DynamicConstant, StaticConstant}
julia> ExpressionTypeAliases.Variable
Union{DynamicVariable, StaticVariable}
julia> ExpressionTypeAliases.Expression
Union{DynamicExpression, MoreStaticExpression, StaticExpression}
julia> ExpressionTypeAliases.ExpressionLoosely
Union{DynamicVariable, DynamicConstant, DynamicExpression, MoreStaticExpression, StaticConstant, StaticExpression, StaticVariable}
Usage example
Represent (x, y) -> y*sind(x - 5)
as an expression and evaluate it with x
set to 17.9
and y
set to 2
:
julia> using CallableExpressions
julia> x = DynamicVariable(:x)
DynamicVariable(:x)
julia> y = StaticVariable{:y}()
StaticVariable{:y}()
julia> c5 = DynamicConstant(5)
DynamicConstant{Int64}(5)
julia> subtraction = StaticExpression((x, c5), -)
StaticExpression{Tuple{DynamicVariable, DynamicConstant{Int64}}, typeof(-)}((DynamicVariable(:x), DynamicConstant{Int64}(5)), -)
julia> trig = DynamicExpression((subtraction,), :sind, (; sind = sind)); # in practice there would be more ops in the named tuple
julia> multiplication = MoreStaticExpression{<:Any,*}((y, trig));
julia> var_vals = (; x = 17.9, y = 2) # `NamedTuple` isn't mandatory, anything with `getproperty` should work
(x = 17.9, y = 2)
julia> multiplication(var_vals) === ((x, y) -> y*sind(x - 5))(var_vals.x, var_vals.y)
true
Pretty printing and display using AbstractTrees.jl
The expressions here implement the
AbstractTrees.jl
interface. This allows pretty-printing using AbstractTrees.print_tree
. Some other packages,
like
D3Trees.jl
, build on the AbstractTrees.jl interface, providing graphic display capabilities.
TermInterface.jl support
A package extension for TermInterface.jl support is provided. It should enable interfacing with packages like SymbolicUtils.jl or Metatheory.jl.
Here's a small example of using the SymbolicUtils.jl rewriting functionality to rewrite
e + e
into 2 * e
:
julia> using CallableExpressions, SymbolicUtils, AbstractTrees
julia> e0 = DynamicVariable(:x);
julia> e1 = StaticExpression((e0, e0), +);
julia> print_tree(e1)
+
├─ DynamicVariable(:x)
└─ DynamicVariable(:x)
julia> r = @rule (~x + ~x) => StaticExpression((DynamicConstant(2), ~x), *)
~x + ~x => StaticExpression((DynamicConstant(2), ~x), *)
julia> print_tree(r(e1))
*
├─ DynamicConstant{Int64}(2)
└─ DynamicVariable(:x)
Functionality
Base
interfaces: equality and hashing
We have, e.g., DynamicVariable(:x) == StaticVariable{:x}()
.
Base
interfaces: conversion and promotion
In some cases it's possible to promote and convert between the different implementations:
julia> using CallableExpressions
julia> promote_type(StaticVariable{:x}, StaticVariable{:y})
DynamicVariable
julia> promote_type(StaticVariable{:x}, DynamicVariable)
DynamicVariable
julia> promote_type(StaticConstant{3}, StaticConstant{7})
DynamicConstant{Int64}
julia> promote_type(StaticConstant{3}, DynamicConstant{Int})
DynamicConstant{Int64}
julia> promote_type(StaticConstant{3}, DynamicConstant{Float64})
DynamicConstant{Float64}
julia> promote_type(DynamicConstant{Int}, DynamicConstant{Float64})
DynamicConstant{Float64}
julia> convert(StaticVariable, DynamicVariable(:x))
StaticVariable{:x}()
expression_is_constant
Use expression_is_constant(expr)::Bool
to tell whether expr
is constant, in the sense of
not depending on any variables.
expression_map_matched
The expression_map_matched
function allows functionality such as constant folding or
substitution:
julia> using CallableExpressions, AbstractTrees
julia> multiplication = ... # as above
julia> print_tree(multiplication)
*
├─ StaticVariable{:y}()
└─ sind
└─ -
├─ DynamicVariable(:x)
└─ DynamicConstant{Int64}(5)
julia> match_x = isequal(StaticVariable{:x}())
(::Base.Fix2{typeof(isequal), StaticVariable{:x}}) (generic function with 1 method)
julia> mult2 = expression_map_matched(match_x, (_ -> DynamicConstant(0.1)), multiplication);
julia> print_tree(mult2)
*
├─ StaticVariable{:y}()
└─ sind
└─ -
├─ DynamicConstant{Float64}(0.1)
└─ DynamicConstant{Int64}(5)
julia> mult3 = expression_map_matched(expression_is_constant, (e -> DynamicConstant(e((;)))), mult2);
julia> print_tree(mult3)
*
├─ StaticVariable{:y}()
└─ DynamicConstant{Float64}(-0.0854169)
expression_into_type_domain
The expression_into_type_domain
function tries to move expressions wholly into the type domain:
julia> using CallableExpressions
julia> expr = DynamicExpression((DynamicVariable(:x), DynamicConstant(3)), :op, (; op = +));
julia> Base.issingletontype(typeof(expr))
false
julia> of_singleton_type = expression_into_type_domain(expr);
julia> Base.issingletontype(typeof(of_singleton_type))
true
julia> expr == of_singleton_type
true
It throws when Julia isn't able to use a relevant value as a type parameter.
Designed to preserve the singleton type property when possible
julia> using CallableExpressions
julia> e = StaticExpression(
(
StaticVariable{:x}(),
StaticConstant{7}(),
),
+,
)
StaticExpression{Tuple{StaticVariable{:x}, StaticConstant{7}}, typeof(+)}((StaticVariable{:x}(), StaticConstant{7}()), +)
julia> Base.issingletontype(typeof(e))
true