Fault Models

This document describes the fault data models, and their mathematical formulations.

Transmission

This section describes the data model for faults under the transmission schema, i.e. when using solve_fault_study.

NameDefaultTypeUnitsUsedDescription
fault_busStringalwaysid of bus connection
gRealalwaysFault conductance
b0.0RealalwaysFault susceptance
status1Intalways1 or 0. Indicates if component is enabled or disabled, respectively
fault_typeStringMetadata field that helps users quickly identify type of fault \in ["lg", "ll", "llg", "3p", "3pg"]

Distribution

This section describes the data models for the distribution

ENGINEERING data model (user-facing)

NameDefaultTypeUnitsUsedDescription
busStringalwaysid of bus connection
connectionsVector{Int}alwaysOrdered list of connected conductors, size=nconductors
gMatrix{Real}SiemensalwaysFault conductance matrix, size=(nconductors,nconductors)
bzeros(nconductors,nconductors)Matrix{Real}SiemensalwaysFault susceptance matrix, size=(nconductors,nconductors)
statusENABLEDStatusalwaysENABLED or DISABLED. Indicates if component is enabled or disabled, respectively
fault_typeStringMetadata field that helps users quickly identify type of fault \in ["lg", "ll", "llg", "3p", "3pg"]

MATHEMATICAL data model (internal)

NameDefaultTypeUnitsUsedDescription
fault_busIntalwaysid of bus connection
connectionsVector{Int}alwaysOrdered list of connected conductors, size=nconductors
gMatrix{Real}per-unitalwaysFault conductance matrix, size=(nconductors,nconductors)
bzeros(nconductors,nconductors)Matrix{Real}per-unitalwaysFault susceptance matrix, size=(nconductors,nconductors)
status1Intalways1 or 0. Indicates if component is enabled or disabled, respectively

Connection Examples

Line-Ground (Phase A)

Connections connections: [1,0] Fault admittance matrix g: $ \begin{bmatrix} gf & -gf \ -gf & gf \end{bmatrix} $ Fault admittance matrix b: $ \begin{bmatrix} bf & -bf \ -bf & bf \end{bmatrix} $

Line-Neutral (Ungrounded Neutral, Phase A)

Connections connections: [1,4] Fault admittance matrix g: $ \begin{bmatrix} gf & -gf \ -gf & gf \end{bmatrix} $ Fault admittance matrix b: $ \begin{bmatrix} bf & -bf \ -bf & bf \end{bmatrix} $

Line-Line (Phase A-B)

Connections connections: [1,0] Fault admittance matrix g: $ \begin{bmatrix} gf & -gf \ -gf & gf \end{bmatrix} $ Fault admittance matrix b: $ \begin{bmatrix} bf & -bf \ -bf & bf \end{bmatrix} $

Line-Line-Ground (Phase A-B)

Connections connections: [1,2,0] Fault admittance matrix g: $ \begin{bmatrix} g{pg} + g{pp} & -g{pp} & -g{pg} \ -g{pp} & g{pg} + g{pp} & -g{pg} \ -g{pg} & -g{pg} & 2g{pg} \ \end{bmatrix} $ Fault admittance matrix b: $ \begin{bmatrix} b{pg} + b{pp} & -b{pp} & -b{pg} \ -b{pp} & b{pg} + b{pp} & -b{pg} \ -b{pg} & -b{pg} & 2b{pg} \ \end{bmatrix} $

Three-Phase Ungrounded

Connections connections: [1,2,3] Fault admittance matrix g: $ 3 \begin{bmatrix} 2gf & -gf & -gf\ -gf & 2gf & -gf \ -gf & -gf & 2gf\ \end{bmatrix} $ Fault admittance matrix b: $ 3 \begin{bmatrix} 2bf & -bf & -bf\ -bf & 2bf & -bf \ -bf & -bf & 2bf\ \end{bmatrix} $

Three-Phase Grounded

Connections connections: [1,2,3,0] Fault admittance matrix g: $ \begin{bmatrix} g{pg} + 2g{pp} & -g{pp} & -g{pp} & -g{pg} \ -g{pp} & g{pg} + 2g{pp} & -g{pg} & -g{pg} \ -g{pp} & -g{pp} & g{pg} + 2g{pp} & -g{pg} \ -g{pg} & -g{pg} & -g{pg} & 3g{pg} \end{bmatrix} $ Fault admittance matrix b: $ \begin{bmatrix} b{pg} + 2b{pp} & -b{pp} & -b{pp} & -b{pg} \ -b{pp} & b{pg} + 2b{pp} & -b{pg} & -b{pg} \ -b{pp} & -b{pp} & b{pg} + 2b{pp} & -b{pg} \ -b{pg} & -b{pg} & -b{pg} & 3b{pg} \end{bmatrix} $

Formulation

Depending on fault type, the constraints between networks are as follows

LG

\[I_{f1} = I_{f2} = I_{f0} = \frac{V_{f1} + V_{f2} + V_{f0}}{Z_f}\]

LL

\[I_{f1} = - I_{f2} = \frac{V_{f1} - V_{f2}}{Z_f}\]

LLG

\[V_{f1} = V_{f2}\]

\[I_{f0} = \frac{V_{f1} - V_{f2}}{Z_f}\]

3P

\[I_{f1} = \frac{V_{f1}}{Z_f}\]

\[I_{f2} = I_{f0} = 0\]