# Activity Models

There are two alternatives on the definition of an activity model:

• Defining an excess gibbs energy function
• Defining an activity coefficient function

those two can be converted between one form to another via:

$\gamma_{i} = \frac{\partial{G^E}}{\partial{n_i}}$

$\ln{\gamma_{i}} = \frac{1}{RT}\frac{\partial{G^E}}{\partial{n_i}}$

When defining one form, the other is derived automatically.

Those functions can also be derived from any arbitrary equation of state:

$\frac{\partial{G^E}}{\partial{n_i}}= \mu_i - \mu^{0}_i$

Where $\mu_i$ and $\mu^{0}_i$ are the mixture and pure chemical potentials of component i. in this case, those potentials are dependent of the pressure. whereas activity models are usually only temperature and composition dependent.

Clapeyron.WilsonType
Wilson <: ActivityModel
Wilson(components;
puremodel = PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• Tc: Single Parameter (Float64) - Critical Temperature [K]
• Pc: Single Parameter (Float64) - Critical Pressure [Pa]
• acentricfactor: Single Parameter (Float64) - Acentric Factor
• Mw: Single Parameter (Float64) - Molecular Weight [g/mol]
• g: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter

model parameters

• Tc: Single Parameter (Float64) - Critical Temperature [K]
• Pc: Single Parameter (Float64) - Critical Pressure [Pa]
• ZRA: Single Parameter (Float64) - Rackett compresibility factor
• Mw: Single Parameter (Float64) - Molecular Weight [g/mol]
• g: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

Wilson activity model, with Rackett correlation for liquid volume:

Gᴱ = nRT∑xᵢlog(∑xⱼjΛᵢⱼ)
Λᵢⱼ = exp(-gᵢⱼ/T)*Vⱼ/Vᵢ
ZRAᵢ = 0.29056 - 0.08775ωᵢ
Vᵢ = (RTcᵢ/Pcᵢ)ZRAᵢ^(1 + (1-T/Tcᵢ)^2/7)

Model Construction Examples

# Using the default database
model = Wilson(["water","ethanol"]) #Default pure model: PR
model = Wilson(["water","ethanol"],puremodel = BasicIdeal) #Using Ideal Gas for pure model properties
model = Wilson(["water","ethanol"],puremodel = PCSAFT) #Using Real Gas model for pure model properties

# Passing a prebuilt model

my_puremodel = AbbottVirial(["water","ethanol"]; userlocations = ["path/to/my/db","critical.csv"])
mixing = Wilson(["water","ethanol"],puremodel = my_puremodel)

# Using user-provided parameters

# Passing files or folders
model = Wilson(["water","ethanol"];userlocations = ["path/to/my/db","wilson.csv"])

# Passing parameters directly
model = Wilson(["water","ethanol"],
userlocations = (g = [0.0 3988.52; 1360.117 0.0],
Tc = [647.13, 513.92],
Pc = [2.19e7, 6.12e6],
acentricfactor = [0.343, 0.643],
Mw = [18.015, 46.069])
)

References

1. Wilson, G. M. (1964). Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. Journal of the American Chemical Society, 86(2), 127–130. doi:10.1021/ja01056a002
Clapeyron.NRTLType
NRTL <: ActivityModel

function NRTL(components;
puremodel=PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• a: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• b: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• c: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• Mw: Single Parameter (Float64) (Optional) - Molecular Weight [g/mol]

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

NRTL (Non Random Two Fluid) activity model:

Gᴱ = nRT∑[xᵢ(∑τⱼᵢGⱼᵢxⱼ)/(∑Gⱼᵢxⱼ)]
Gᵢⱼ exp(-cᵢⱼτᵢⱼ)
τᵢⱼ = aᵢⱼ + bᵢⱼ/T

Model Construction Examples

# Using the default database
model = NRTL(["water","ethanol"]) #Default pure model: PR
model = NRTL(["water","ethanol"],puremodel = BasicIdeal) #Using Ideal Gas for pure model properties
model = NRTL(["water","ethanol"],puremodel = PCSAFT) #Using Real Gas model for pure model properties

# Passing a prebuilt model

my_puremodel = AbbottVirial(["water","ethanol"]; userlocations = ["path/to/my/db","critical.csv"])
mixing = NRTL(["water","ethanol"],puremodel = my_puremodel)

# Using user-provided parameters

# Passing files or folders
model = NRTL(["water","ethanol"];userlocations = ["path/to/my/db","nrtl_ge.csv"])

# Passing parameters directly
model = NRTL(["water","ethanol"],
userlocations = (a = [0.0 3.458; -0.801 0.0],
b = [0.0 -586.1; 246.2 0.0],
c = [0.0 0.3; 0.3 0.0])
)

References

1. Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE journal. American Institute of Chemical Engineers, 14(1), 135–144. doi:10.1002/aic.690140124
Clapeyron.aspenNRTLType
aspenNRTL <: ActivityModel

function aspenNRTL(components;
puremodel=PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• a0: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• a1: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• t0: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• t1: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• t2: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• t3: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

NRTL (Non Random Two Fluid) activity model:

Gᴱ = nRT∑[xᵢ(∑τⱼᵢGⱼᵢxⱼ)/(∑Gⱼᵢxⱼ)]
Gᵢⱼ exp(-αᵢⱼτᵢⱼ)
αᵢⱼ = αᵢⱼ₀ + αᵢⱼ₁T
τᵢⱼ = tᵢⱼ₀ + tᵢⱼ₁/T + tᵢⱼ₂*ln(T) + tᵢⱼ₃*T

Model Construction Examples

# Using the default database
model = aspenNRTL(["water","ethanol"]) #Default pure model: PR
model = aspenNRTL(["water","ethanol"],puremodel = BasicIdeal) #Using Ideal Gas for pure model properties
model = aspenNRTL(["water","ethanol"],puremodel = PCSAFT) #Using Real Gas model for pure model properties
# Passing a prebuilt model

my_puremodel = AbbottVirial(["water","ethanol"]; userlocations = ["path/to/my/db","critical.csv"])
mixing = aspenNRTL(["water","ethanol"],puremodel = my_puremodel)

# Using user-provided parameters

# Passing files or folders
model = aspenNRTL(["water","ethanol"];userlocations = ["path/to/my/db","nrtl.csv"])

# Passing parameters directly
model = aspenNRTL(["water","acetone"],
userlocations = (a0 = [0.0 0.228632; 0.228632 0.0],
a1 = [0.0 0.000136; 0.000136 0.0],
t0 = [0.0 13.374756; 16.081848 0.0],
t1 = [0.0 -415.527344; -88.8125 0.0],
t2 = [0.0 -1.913689; -2.930901 0.0],
t3 = [0.0 0.00153; 0.005305 0.0])
)

References

1. Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE journal. American Institute of Chemical Engineers, 14(1), 135–144. doi:10.1002/aic.690140124
Clapeyron.UNIQUACType
UNIQUACModel <: ActivityModel

UNIQUAC(components;
puremodel = PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• a: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary Interaction Energy Parameter
• r: Single Parameter (Float64) - Normalized Van der Vals volume
• q: Single Parameter (Float64) - Normalized Surface Area
• q_p: Single Parameter (Float64) - Modified Normalized Surface Area
• Mw: Single Parameter (Float64) - Molecular Weight [g/mol]

Input models

• puremodel: model to calculate pure pressure-dependent properties

UNIQUAC (Universal QuasiChemical Activity Coefficients) activity model:

Gᴱ = nRT(gᴱ(comb) + gᴱ(res))
gᴱ(comb) = ∑[xᵢlog(Φᵢ/xᵢ) + 5qᵢxᵢlog(θᵢ/Φᵢ)]
gᴱ(res) = -∑xᵢqᵖᵢlog(∑θᵖⱼτⱼᵢ)
θᵢ = qᵢxᵢ/∑qᵢxᵢ
θᵖ = qᵖᵢxᵢ/∑qᵖᵢxᵢ
Φᵢ = rᵢxᵢ/∑rᵢxᵢ
τᵢⱼ = exp(-aᵢⱼ/T)

Model Construction Examples

# Using the default database
model = UNIQUAC(["water","ethanol"]) #Default pure model: PR
model = UNIQUAC(["water","ethanol"],puremodel = BasicIdeal) #Using Ideal Gas for pure model properties
model = UNIQUAC(["water","ethanol"],puremodel = PCSAFT) #Using Real Gas model for pure model properties

# Passing a prebuilt model

my_puremodel = AbbottVirial(["water","ethanol"]; userlocations = ["path/to/my/db","critical.csv"])
mixing = UNIQUAC(["water","ethanol"],puremodel = my_puremodel)

# Using user-provided parameters

# Passing files or folders
model = UNIQUAC(["water","ethanol"];userlocations = ["path/to/my/db","uniquac_ge.csv"])

# Passing parameters directly
model = UNIQUAC(["water","ethanol"],
userlocations = (a = [0.0 378.1; 258.4 0.0],
r = [0.92, 2.11],
q = [1.4, 1.97],
q_p = [1.0, 0.92],
Mw = [18.015, 46.069])
)

References

1. Abrams, D. S., & Prausnitz, J. M. (1975). Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE journal. American Institute of Chemical Engineers, 21(1), 116–128. doi:10.1002/aic.690210115
Clapeyron.ogUNIFACType
ogUNIFACModel <: UNIFACModel

ogUNIFAC(components;
puremodel = PR,
userlocations = String[],
group_userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• R: Single Parameter (Float64) - Normalized group Van der Vals volume
• Q: Single Parameter (Float64) - Normalized group Surface Area
• A: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter

Input models

• puremodel: model to calculate pure pressure-dependent properties

UNIFAC (UNIQUAC Functional-group Activity Coefficients) activity model.

Original formulation.

The Combinatorial part corresponds to an GC-averaged modified UNIQUAC model. The residual part iterates over groups instead of components.

Gᴱ = nRT(gᴱ(comb) + gᴱ(res))

Combinatorial part:

gᴱ(comb) = ∑[xᵢlog(Φᵢ/xᵢ) + 5qᵢxᵢlog(θᵢ/Φᵢ)]
θᵢ = qᵢxᵢ/∑qᵢxᵢ
Φᵢ = rᵢxᵢ/∑rᵢxᵢ
rᵢ = ∑Rₖνᵢₖ for k ∈ groups
qᵢ = ∑Qₖνᵢₖ for k ∈ groups

Residual Part:

gᴱ(residual) = -v̄∑XₖQₖlog(∑ΘₘΨₘₖ)
v̄ = ∑∑xᵢνᵢₖ for k ∈ groups,  for i ∈ components
Xₖ = (∑xᵢνᵢₖ)/v̄ for i ∈ components
Θₖ = QₖXₖ/∑QₖXₖ
Ψₖₘ = exp(-(Aₖₘ/T)

References

1. Fredenslund, A., Gmehling, J., Michelsen, M. L., Rasmussen, P., & Prausnitz, J. M. (1977). Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Industrial & Engineering Chemistry Process Design and Development, 16(4), 450–462. doi:10.1021/i260064a004
Clapeyron.UNIFACType
UNIFACModel <: ActivityModel

UNIFAC(components;
puremodel = PR,
userlocations = String[],
group_userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• R: Single Parameter (Float64) - Normalized group Van der Vals volume
• Q: Single Parameter (Float64) - Normalized group Surface Area
• A: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• B: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• C: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

UNIFAC (UNIQUAC Functional-group Activity Coefficients) activity model. Modified UNIFAC (Dortmund) implementation. The Combinatorial part corresponds to an GC-averaged modified UNIQUAC model. The residual part iterates over groups instead of components.

Gᴱ = nRT(gᴱ(comb) + gᴱ(res))

Combinatorial part:

gᴱ(comb) = ∑[xᵢlog(Φ'ᵢ) + 5qᵢxᵢlog(θᵢ/Φᵢ)]
θᵢ = qᵢxᵢ/∑qᵢxᵢ
Φᵢ = rᵢxᵢ/∑rᵢxᵢ
Φ'ᵢ = rᵢ^(0.75)/∑xᵢrᵢ^(0.75)
rᵢ = ∑Rₖνᵢₖ for k ∈ groups
qᵢ = ∑Qₖνᵢₖ for k ∈ groups

Residual Part:

gᴱ(residual) = -v̄∑XₖQₖlog(∑ΘₘΨₘₖ)
v̄ = ∑∑xᵢνᵢₖ for k ∈ groups,  for i ∈ components
Xₖ = (∑xᵢνᵢₖ)/v̄ for i ∈ components
Θₖ = QₖXₖ/∑QₖXₖ
Ψₖₘ = exp(-(Aₖₘ + BₖₘT + CₖₘT²)/T)

References

1. Fredenslund, A., Gmehling, J., Michelsen, M. L., Rasmussen, P., & Prausnitz, J. M. (1977). Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Industrial & Engineering Chemistry Process Design and Development, 16(4), 450–462. doi:10.1021/i260064a004
2. Weidlich, U.; Gmehling, J. A modified UNIFAC model. 1. Prediction of VLE, hE, and.gamma..infin. Ind. Eng. Chem. Res. 1987, 26, 1372–1381.

List of groups available

NameDescription
CH3Methyl group
CH2Methylene group
CH
C
CH2=CH
CH=CH
CH2=C
CH=C
ACHAromatic CH
AC
ACCH3
ACCH2
ACCH
OH (P)Primary alcohol
CH3OHMethanol
H2OWater
ACOH
CH3COMethyl ketone
CH2COMethylene ketone
CHO
CH3COOAcetate group
CH2COO
HCOO
CH3OMethoxy group
CH2O
CHO
THFTetrahydrofuran
CH3NH2Methylamine
CH2NH2
CHNH2
CH3NH
CH2NH
CHNH
CH3N
CH2N
ACNH2
AC2H2N
AC2HN
AC2N
CH3CNAcetonitrile
CH2CN
COOEster group
COOHCarboxylate group
HCOOHFormic acid
CH2CL
CHCL
CCL
CH2CL2Dichloromethane
CHCL2
CCL2
CHCL3Chloroform
CCL3
CCL4Carbon tetrachloride
ACCL
CH3NO2Nitromethane
CH2NO2
CHNO2
ACNO2
CS2Carbon disulfide
CH3SHMethanethiol
CH2SH
FURFURALFurfural
DOH
IIodine group
BRBromine group
CH=-C
C=-C
DMSODimethyl sulfoxide
ACRYAcrylate
CL-(C=C)
C=C
ACF
DMFDimethylformamide
HCON(CH2)2
CF3
CF2
CF
CY-CH2Cycloalkane group
CY-CH
CY-C
OH (S)Second hydroxyl group
OH (T)Tertiary hydroxyl group
CY-CH2O
TRIOXANTrioxane
CNH2
NMPN-Methylpyrrolidone
NEP
NIPP
NTBP
CONH2
CONHCH3
CONHCH2
Clapeyron.PSRKUNIFACType
PSRKUNIFAC(components;
puremodel = BasicIdeal,
userlocations = String[],
group_userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• R: Single Parameter (Float64) - Normalized group Van der Vals volume
• Q: Single Parameter (Float64) - Normalized group Surface Area
• A: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• B: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• C: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

UNIFAC (UNIQUAC Functional-group Activity Coefficients) activity model.

Modified UNIFAC (Dortmund) implementation, with parameters tuned to the Predictive Soave-Redlich-Kwong (PSRK) EoS.

References

1. Fredenslund, A., Gmehling, J., Michelsen, M. L., Rasmussen, P., & Prausnitz, J. M. (1977). Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Industrial & Engineering Chemistry Process Design and Development, 16(4), 450–462. doi:10.1021/i260064a004
2. Weidlich, U.; Gmehling, J. A modified UNIFAC model. 1. Prediction of VLE, hE, and.gamma..infin. Ind. Eng. Chem. Res. 1987, 26, 1372–1381.
3. Horstmann, S., Jabłoniec, A., Krafczyk, J., Fischer, K., & Gmehling, J. (2005). PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria, 227(2), 157–164. doi:10.1016/j.fluid.2004.11.002"
Clapeyron.VTPRUNIFACType
VTPRUNIFACModel <: UNIFACModel

VTPRUNIFAC(components;
puremodel = BasicIdeal,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• Q: Single Parameter (Float64) - Normalized group Surface Area
• A: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• B: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• C: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

UNIFAC (UNIQUAC Functional-group Activity Coefficients) activity model.

Modified UNIFAC (Dortmund) implementation, only residual part, activity model used for the Volume-Translated Peng-Robinson (VTPR) EoS.

The residual part iterates over groups instead of components.

Gᴱ = nRT(gᴱ(res))
gᴱ(res) = -v̄∑XₖQₖlog(∑ΘₘΨₘₖ)
v̄ = ∑∑xᵢνᵢₖ for k ∈ groups,  for i ∈ components
Xₖ = (∑xᵢνᵢₖ)/v̄ for i ∈ components
Θₖ = QₖXₖ/∑QₖXₖ
Ψₖₘ = exp(-(Aₖₘ + BₖₘT + CₖₘT²)/T)

References

1. Fredenslund, A., Gmehling, J., Michelsen, M. L., Rasmussen, P., & Prausnitz, J. M. (1977). Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Industrial & Engineering Chemistry Process Design and Development, 16(4), 450–462. "doi:10.1021/i260064a004"
2. Weidlich, U.; Gmehling, J. A modified UNIFAC model. 1. Prediction of VLE, hE, and.gamma..infin. Ind. Eng. Chem. Res. 1987, 26, 1372–1381.
3. Ahlers, J., & Gmehling, J. (2001). Development of an universal group contribution equation of state. Fluid Phase Equilibria, 191(1–2), 177–188. doi:10.1016/s0378-3812(01)00626-4
Clapeyron.UNIFACFVType
UNIFACFVModel <: ActivityModel

UNIFACFV(components;
puremodel = PR,
userlocations = String[],
group_userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• volume: Single Parameter (Float64) - specific volume of species [g/cm^3]
• R: Single Parameter (Float64) - Normalized group Van der Vals volume
• Q: Single Parameter (Float64) - Normalized group Surface Area
• A: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• Mw: Single Parameter (Float64) - Molecular weight of groups

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

UNIFACFV (UNIFAC Free Volume) activity model. specialized for solvent-polymer mixtures

The Combinatorial part corresponds to an GC-averaged modified UNIQUAC model.

Gᴱ = nRT(gᴱ(comb) + gᴱ(res) + gᴱ(FV))

References

Clapeyron.UNIFACFVPolyType
UNIFACFVPolyModel <: ActivityModel

UNIFACFVPoly(components;
puremodel = PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• volume: Single Parameter (Float64) - specific volume of species [g/cm^3]
• c Single Parameter (Float64) - number of external degrees of freedom per solvent molecule
• R: Single Parameter (Float64) - Normalized group Van der Vals volume
• Q: Single Parameter (Float64) - Normalized group Surface Area
• A: Pair Parameter (Float64, asymetrical, defaults to 0) - Binary group Interaction Energy Parameter
• Mw: Single Parameter (Float64) - Molecular weight of groups

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

UNIFAC-FV (polymer) (UNIFAC Free Volume) activity model. specialized for polymer blends

The Combinatorial part corresponds to an GC-averaged modified UNIQUAC model.

Gᴱ = nRT(gᴱ(comb) + gᴱ(res) + gᴱ(FV))
Clapeyron.tcPRWilsonResType
tcPRWilsonRes <: WilsonModel
tcPRWilsonRes(components;
puremodel = BasicIdeal,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters

• g: Pair Parameter (Float64, asymetrical, defaults to 0) - Interaction Parameter
• v: Single Parameter (optional) (Float64) - individual volumes.

Input models

• puremodel: model to calculate pure pressure-dependent properties

Description

tc-PR-Wilson residual activity model, meant to used in combination with the tc-PR cubic EoS:

Gᴱᵣ = nRT( ∑xᵢlog(∑xⱼjΛᵢⱼ) - ∑xᵢ*(log(vᵢ/v) )
Λᵢⱼ = exp(-gᵢⱼ/T)*Vⱼ/Vᵢ 

Model Construction Examples

# Using the default database
model = tcPRWilsonRes(["water","ethanol"]) #Default pure model: PR
model = tcPRWilsonRes(["water","ethanol"],puremodel = BasicIdeal) #Using Ideal Gas for pure model properties
model = tcPRWilsonRes(["water","ethanol"],puremodel = PCSAFT) #Using Real Gas model for pure model properties

# Passing a prebuilt model

my_puremodel = AbbottVirial(["water","ethanol"]; userlocations = ["path/to/my/db","critical.csv"])
mixing = tcPRWilsonRes(["water","ethanol"],puremodel = my_puremodel)

# Using user-provided parameters

# Passing files or folders
model = tcPRWilsonRes(["water","ethanol"];userlocations = ["path/to/my/db","tcpr_wilson.csv"])

# Passing parameters directly
model = tcPRWilsonRes(["water","ethanol"],userlocations = (;g = [0.0 3988.52; 1360.117 0.0]))

References

1. Wilson, G. M. (1964). Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. Journal of the American Chemical Society, 86(2), 127–130. doi:10.1021/ja01056a002
2. Piña-Martinez, A., Privat, R., Nikolaidis, I. K., Economou, I. G., & Jaubert, J.-N. (2021). What is the optimal activity coefficient model to be combined with the translated–consistent Peng–Robinson equation of state through advanced mixing rules? Cross-comparison and grading of the Wilson, UNIQUAC, and NRTL aE models against a benchmark database involving 200 binary systems. Industrial & Engineering Chemistry Research, 60(47), 17228–17247. doi:10.1021/acs.iecr.1c03003
Clapeyron.COSMOSAC02Type
COSMOSAC02(components;
puremodel = PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters:

• Pi :Single Parameter{String}
• V: Single Parameter{Float64}
• A: Single Parameter{Float64}

Description

An activity coefficient model using molecular solvation based on the COSMO-RS method.

References

1. Lin, S-T. & Sandler, S.I. (2002). A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & Engineering Chemistry Research, 41(5), 899–913. doi:10.1021/ie001047w
Clapeyron.COSMOSAC10Type
COSMOSAC10(components;
puremodel = PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters:

• Pnhb :Single Parameter{String}
• POH :Single Parameter{String}
• POT :Single Parameter{String}
• V: Single Parameter{Float64}
• A: Single Parameter{Float64}

Description

An activity coefficient model using molecular solvation based on the COSMO-RS method. Sigma profiles are now split by non-hydrogen bonding, hydrogen acceptor and hydrogen donor.

References

1. Hsieh, C-H., Sandler, S.I., & Lin, S-T. (2010). Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilibria, 297(1), 90-97. doi:10.1016/j.fluid.2010.06.011
Clapeyron.COSMOSACdspType
COSMOSACdsp(components;
puremodel = PR,
userlocations = String[],
pure_userlocations = String[],
verbose = false)

Input parameters:

• Pnhb :Single Parameter{String}
• POH :Single Parameter{String}
• POT :Single Parameter{String}
• V: Single Parameter{Float64}
• A: Single Parameter{Float64}
• epsilon: Single Parameter{Float64}
• COOH: Single Parameter{Float64}
• water: Single Parameter{Float64}
• hb_acc: Single Parameter{Float64}
• hb_don: Single Parameter{Float64}

Description

An activity coefficient model using molecular solvation based on the COSMO-RS method. Sigma profiles are now split by non-hydrogen bonding, hydrogen acceptor and hydrogen donor. A dispersive correction is included.

References

1. Hsieh, C-H., Lin, S-T. & Vrabec, J. (2014). Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior. Fluid Phase Equilibria, 367, 109-116. doi:10.1016/j.fluid.2014.01.032