# Logical connectives

## Conjuction methods

### DrasticAnd

FuzzyLogic.DrasticAndType
struct DrasticAnd <: FuzzyLogic.AbstractAnd

Drastic T-norm defining conjuction as $A ∧ B = \min(A, B)$ is $A = 1$ or $B = 1$ and $A ∧ B = 0$ otherwise.

### EinsteinAnd

FuzzyLogic.EinsteinAndType
struct EinsteinAnd <: FuzzyLogic.AbstractAnd

Einstein T-norm defining conjuction as $A ∧ B = \frac{AB}{2 - A - B + AB}$.

### HamacherAnd

FuzzyLogic.HamacherAndType
struct HamacherAnd <: FuzzyLogic.AbstractAnd

Hamacher T-norm defining conjuction as $A ∧ B = \frac{AB}{A + B - AB}$ if $A \neq 0 \neq B$ and $A ∧ B = 0$ otherwise.

### LukasiewiczAnd

FuzzyLogic.LukasiewiczAndType
struct LukasiewiczAnd <: FuzzyLogic.AbstractAnd

Lukasiewicz T-norm defining conjuction as $A ∧ B = \max(0, A + B - 1)$.

### MinAnd

FuzzyLogic.MinAndType
struct MinAnd <: FuzzyLogic.AbstractAnd

Minimum T-norm defining conjuction as $A ∧ B = \min(A, B)$.

### NilpotentAnd

FuzzyLogic.NilpotentAndType
struct NilpotentAnd <: FuzzyLogic.AbstractAnd

Nilpotent T-norm defining conjuction as $A ∧ B = \min(A, B)$ when $A + B > 1$ and $A ∧ B = 0$ otherwise.

### ProdAnd

FuzzyLogic.ProdAndType
struct ProdAnd <: FuzzyLogic.AbstractAnd

Product T-norm defining conjuction as $A ∧ B = AB$.