CO2 Compression Modeling

co2_capture_compression(EP::Model, inputs::Dict,setup::Dict)

The CO2 compression module creates decision variables, expressions, and constraints related to CO2 compression infrastructure for captured CO2 by DAC units.

This module defines the CO2 compression decision variable $x_{k,z,t}^{\textrm{C,COMP}} \forall k \in \mathcal{K}, z \in \mathcal{Z}, t \in \mathcal{T}$, representing CO2 compressed by resource $k$ in zone $z$ at time period $t$ after being captured by DAC.

The variable defined in this file named after vDAC\textunderscore{CO2}\textunderscore{Capture}\textunderscore{Compressed}$ covers all variables $x_{k,z,t}^{\textrm{C,COMP}}$.

This module defines the power consumption decision variable $x_{z,t}^{\textrm{E,COMP}} \forall z\in \mathcal{Z}, t \in \mathcal{T}$, representing power consumed by CO2 compression in zone $z$ at time period $t$.

The variable defined in this file named after vPower\textunderscore{CO2}\textunderscore{Capture}\textunderscore{Compressed} cover variable $x_{z,t}^{E,COMP}$.

Minimum and maximum CO2 compression output

\[\begin{equation*} x_{k,z,t}^{\textrm{C,COMP}} \geq \underline{R_{k,z}^{\textrm{C,COMP}}} \times y_{k,z}^{\textrm{C,COMP}} \quad \forall k \in \mathcal{K}, z \in \mathcal{Z}, t \in \mathcal{T} \end{equation*}\]

\[\begin{equation*} x_{k,z,t}^{\textrm{C,COMP}} \leq \overline{R_{k,z}^{\textrm{C,COMP}}} \times y_{k,z}^{\textrm{C,COMP}} \quad \forall k \in \mathcal{K}, z \in \mathcal{Z}, t \in \mathcal{T} \end{equation*}\]

CO2 Compression Investment

co2_capture_compression_investment(EP::Model, inputs::Dict, setup::Dict)

This module defines the total fixed cost (Investment + Fixed O&M) of compressing the CO2 after capture by DAC

Sets up constraints common to all CO2 compression resources.

This function defines the expressions and constraints keeping track of total available CO2 compression capacity $y_{k}^{\textrm{C,COMP}}$ as well as constraints on capacity.

The expression defined in this file named after vCapacity\textunderscore{CO2}\textunderscore{Caputure}\textunderscore{Comp}\textunderscore{per}\textunderscore{type} covers all variables $y_{k}^{\textrm{C,DAC}}$.

The total capacity of each CO2 compression resource is defined as the sum of newly invested capacity based on the assumption there are no existing CO2 compression resources.

Cost expressions

This module additionally defines contributions to the objective function from investment costs of CO2 compression (fixed O\&M plus investment costs) from all resources $k \in \mathcal{K}$:

\[\begin{equation*} \textrm{C}^{\textrm{C,COMP,c}} = \sum_{k \in \mathcal{K}} \sum_{z \in \mathcal{Z}} y_{k, z}^{\textrm{C,COMP}}\times \textrm{c}_{k}^{\textrm{COMP,INV}} + \sum_{k \in \mathcal{K}} \sum_{z \in \mathcal{Z}} y_{g, z}^{\textrm{C,COMP,total}} \times \textrm{c}_{k}^{\textrm{COMP,FOM}} \end{equation*}\]