CO2 Pipeline Modeling

Dolphyn.co2_pipelineMethod
co2_pipeline(EP::Model, inputs::Dict, setup::Dict)

This function includes the variables, expressions and objective funtion of CO2 pipeline.

This function expresses CO2 exchange through pipeline i between two zones and can be split into CO2 delivering and flowing out.

This module defines the CO2 pipeline construction decision variable $y_{i,z \rightarrow z^{\prime}}^{\textrm{C,PIP}} \forall i \in \mathcal{I}, z \rightarrow z^{\prime} \in \mathcal{B}$, representing newly constructed CO2 pipeline of type $i$ through path $z \rightarrow z^{\prime}$.

This module defines the CO2 pipeline flow decision variable $x_{i,z \rightarrow z^{\prime},t}^{\textrm{C,PIP}} \forall i \in \mathcal{I}, z \rightarrow z^{\prime} \in \mathcal{B}, t \in \mathcal{T}$, representing CO2 flow via pipeline of type $i$ through path $z \rightarrow z^{\prime}$ at time period $t$.

This module defines the CO2 pipeline storage level decision variable $U_{i,z \rightarrow z^{\prime},t}^{\textrm{C,PIP}} \forall i \in \mathcal{I}, z \rightarrow z^{\prime} \in \mathcal{B}, t \in \mathcal{T}$, representing CO2 stored in pipeline of type $i$ through path $z \rightarrow z^{\prime}$ at time period $t$.

The variable defined in this file named after vCO2NPipe covers variable $y_{i,z \rightarrow z^{\prime}}^{\textrm{C,PIP}}$.

The variable defined in this file named after vCO2PipeFlow_pos covers variable $x_{i,z \rightarrow z^{\prime},t}^{\textrm{C,PIP+}}$.

The variable defined in this file named after vCO2PipeFlow_neg covers variable $x_{i,z \rightarrow z^{\prime},t}^{\textrm{C,PIP-}}$.

The variable defined in this file named after vCO2PipeLevel covers variable $U_{i,z \rightarrow z^{\prime},t}^{\textrm{C,PIP}}$.

Cost expressions

This module additionally defines contributions to the objective function from investment costs of generation (fixed OM plus construction) from all pipeline resources $i \in \mathcal{I}$:

\[\begin{equation*} \textrm{C}^{\textrm{C,PIP,c}}=\delta_{i}^{\textrm{C,PIP}} \sum_{i \in \mathbb{I}} \sum_{z \rightarrow z^{\prime} \in \mathbb{B}} \textrm{c}_{i}^{\textrm{C,PIP}} \textrm{L}_{z \rightarrow z^{\prime}} l_{i,z \rightarrow z^{\prime}} h_{i,z \rightarrow z^{\prime}, t}^{\textrm{C,PIP}}=h_{i, z \rightarrow z^{\prime}, t}^{\textrm{C,PIP+}}-h_{i, z \rightarrow z^{\prime}, t}^{\textrm{PIP-}} \quad \forall i \in \mathbb{I}, z \rightarrow z^{\prime} \in \mathbb{B}, t \in \mathbb{T} \end{equation*}\]

The flow rate of CO2 through pipeline type $i$ is capped by the operational limits of the pipeline, multiplied by the number of constructed pipeline $i$

\[\begin{equation*} \overline{\textrm{F}}_{i} l_{i,z \rightarrow z^{\prime}} \geq x_{i,z \rightarrow z^{\prime}, t}^{\textrm{\textrm{C,PIP+}}}, x_{i,z \rightarrow z^{\prime}, t}^{\textrm{\textrm{C,PIP-}}} \geq 0 \quad \forall i \in \mathbb{I}, z \rightarrow z^{\prime} \in \mathbb{B}, t \in \mathbb{T} \end{equation*} \]

The pipeline has storage capacity via line packing:

\[\begin{equation*} \overline{\textrm{U}}_{i}^{\textrm{\text{C,PIP}}} l_{i,z \rightarrow z^{\prime}} \geq -\sum_{\tau=t_{0}}^{t}\left(x_{i,z^{\prime}\rightarrow z, \tau}^{\textrm{\textrm{C,PIP}}}+x_{i,z \rightarrow z^{\prime} \tau}^{\textrm{\textrm{C,PIP}}}\right)\Delta t \geq\underline{\textrm{R}}_{i}^{\textrm{\textrm{C,PIP}}}\overline{\textrm{E}}_{i}^{\textrm{\textrm{C,PIP}}} l_{i,z \rightarrow z^{\prime}} \forall z^{\prime} \in Z, z \in Z, i \in I, t \in T \end{equation*} \]

The change of CO2 pipeline storage inventory is modeled as follows:

\[\begin{equation*} U_{i,z \rightarrow z^{\prime},t}^{\textrm{C,PIP}} - U_{i,z \rightarrow z^{\prime},t-1} = x_{i,z \rightarrow z^{\prime},t}^{\textrm{C,PIP-}} + x_{i,z^{\prime} \rightarrow z,t}^{\textrm{C,PIP-}} \end{equation*}\]